Genome Assembly with Long Noisy Reads

Amir Kadivar

December 2015

abstract We consider the problem of de novo genome assembly with
reads characterized by relatively large length, relatively high error rate, es-
pecially in homopolymeric regions. We propose two solutions within the
overlap-layout-consensus framework which can be put to use in tandem.
First, we consider an algorithm to perform alignments in a “condensed”
alphabet where homopolymeric stretches are reduced to single letters. Sec-
ond, we consider an algorithm for deciding whether fwo reads are over-
lapping without any alignment computation but only using the "shift”
distribution of exactly matching k-mers. We demonstrate that these two
algorithms, respectively improve the accuracy and running time of overlap

discovery.

Background

Second generation sequencing technologies are character-
ized by relatively short reads (on average 300 bps), low
error rates, and under 10X coverage with the main chal-
lenge of de novo assembly being the resolution of repeat re-
gions. Third generation sequencing technologies (Pacific
Biosciences’ SMRT, Oxford Nanopore, and the like) are
characterized by longer reads (on average 5-15 kbps), high
error rates (up to 20 %), and up to 40X coverage. As such,
single-molecule sequencing drastically simplifies the prob-
lem posed by repetitive structures. However, established
assembly schemes do not scale well to the dimensions and
low accuracy levels of such technologies: overlap-layout-
consensus schemes suffer due to the high error rates (specifi-
cally the high indel rates) and de-Bruijn graph schemes suf-
fer from the large read lengths. As a final note on the latter
family of assembly schemes we note that the main challenge
for applying the Eulerian path approach to assembly with
long reads is to solve the spectral alignment problem (Pavel
A. Pevzner 2001). The dynamic programming algorithm
that solves this problem could be modified (non-trivially) to
suit assembly with long reads and high error rates (Chaisson,
Pevzner, and Tang 2004).

There has been successful attempts at incorporating SMRT

reads into assembly pipelines. Most commonly, long reads
are used in tandem with second generation techniques (Ko-
ren et al. 2012) mainly in the finishing process and to re-
solve repetitive structures. Here we concern ourselves with
the problem of assembly using only SMRT reads. Proposals
for this problem include the HGAP (Chin et al. 2013) and
MHAP (Berlin et al. 2015) processes. Similar to our first al-
gorithm, compressing the homopolymeric stretches has also
been suggested (Au et al. 2012).

Problem Definition and Scope

In this section we formulate the scope of this report and
briefly consider its boundary with the rest of the assembly
pipeline.

Given a sequence of reads (R,,))_; we wish to find the over-
lap graph G = (V, E) which is a weighted directed acyclic
graph whose vertices V is { R, }_,. Two reads R; and R;
are overlapping with score w, denoted by R; ++ R;, if a suf-
fix of R; aligns with a prefix of R;." Our goal is to find an ap-
proximate E to the set E of all such edges and we define the
sensitivity and specifity of our results in terms of the number
of edges recovered from the rrue overlap graph (built using
a known reference genome).? That is we wish to minimize

both of:

Suppose once a reasonable F is found we proceed as follows
to complete the assembly problem: 1. find a layout path by

1This is accurate as long as the alignment between the R; and R; is not
substring. The accurate formulation is this: R; et R; if the high-
scoring alignment between the two reaches the boundary of both se-
quences and starts at the beginning of R;.

2Since we will also be referring to the sensitivity of the rest of the assembly
pipeline to different kinds of error introduced in the overlap stage, we
reserve the term “sensitivity” for such purposes and refer to false negative
and false positive rates instead.

solving a heaviest path problem over the overlap DAG, 2.
build a “scaffold” by solving a small consensus problem over
the above layout path, 3. align all vertices that were left out
of the layout path onto the scaffold and return a complete
layout path, 4. solve the consensus problem as usual.

This report is only marginally concerned with the above
steps. However, we wish to classify the sensitivity of the
above steps on different kinds of errors introduced in the
overlap stage.

Since the real information content of the overlap graph is
its heaviest path, false negatives, esp. those with weak edges
(i.e not recognizing weakly overlapping reads), are relatively
tolerable: a missing edge can only cost us anything only if
it belongs to the true heaviest path. Similarly, false positives
are more dangerous, esp. those with large weights, since
they may change the order of vertices in the heaviest path in
their favor.

We say that E is consistent with E if its heaviest path (8,)%_,
is a subsequence of the true heaviest path (v,,)%_; of E. As
long as the layout path produced by the first step is large
enough and consistent with the true graph, the overlap stage
is successful. This reasonably corresponds to our formulation

of f:p.s and fin.’s.

Cycle breaking

The resulting overlap graph G' = (V;,) may not be acyclic.
However, a very low f.p. rate implies that G is either acyclic
or not far from it. In our formulation, cycle breaking be-
comes the feedback arc set problem: find the lightest subset
E° of edges in E such that (V, E \ E°) is acyclic. In all
the work presented here cycle breaking is delegated to the
igraph package which supports an optimal, but slow (expo-
nential complexity), integer programming algorithm (Festa,
Pardalos, and Resende 1999) and a suboptimal, but fast, al-
gorithm relying on Eades’ heuristic (Eades, Lin, and Smyth
1993).

Framework and Terminology

Our overlap discovery framework relies fully on k-mer
methods (also known as I-tuples or words). That is, all anal-
ysis begins with indexing all words of length & observed in
all reads and proceeds by finding exactly-matching segments
between each pair of reads. A segment z for reads R; and R;
is any pair of substrings of R; and R; (with potentially un-
equal lengths) together with an alignment between the two

substrings. Two segments overlap if both their correspond-
ing substrings in R; and R; are overlapping. A segment is
exactly-matching, referred to as a seed, if its alignment con-
tains no mismatches or indels. A seed is maximal if it cannot
be extended in either direction by an exact match. Any set
of seeds can be reduced to a maximal set of segments whose
members are necessarily non-overlapping. A segment for
reads R; and R; is fully extended if its alignment is an over-
lap (i.e sufhix-prefix) alignment of R; and R;. The shift of a
segment 2 for reads R; and R; with starting positions z; and
z; in the corresponding sequences is the integer z; — z;.

Our first algorithm builds the overlap graph by trying to
find, for any given pair of reads, a fully-extended segment
with reasonable score. The scheme for extending segments
in reasonable time and space constraints is fairly simple. The
only twist is that all alignments during seed extension are
performed in a “condensed” alphabet, referred to as the hp.-

condensed alphabet.

The second algorithm builds the overlap graph by calculat-
ing, for each pair of reads, a measure of “peakedness” of the
distribution of the shifts of all their observed seeds. The intu-
ition is that if two reads are overlapping there probably is a
concentration of seeds with very close shift values. Since the
two approaches are not mutually exclusive a natural hybrid
of the two is also proposed.

Alphabet translation

The idea behind performing alignments in the h.p.-
condensed alphabet is to capture the fact that indels are sig-
nificantly more likely in homopolymeric stretches in SMRT
sequencing. In order to avoid higher order Markov interac-
tions in the dynamic programming algorithm we translate
the reads and their seeds into the condensed alphabet, sym-
bolically represented as

{A,C,G, T} x N = {zn:2 € {A,C,G,T},n € N}.

However, for the computational problem to be well-posed
we need the condensed alphabet to be finite. Therefore, the
translation process requires a parameter, referred to as the
h.p. max. length h, which reduces the condensed alphabet to
{A,C,G,T} x Ncp. That is, all homopolymeric stretches
longer than h are considered to have length h.> Weleth =5
hereafter.

3This comes with a caveat: if the source alphabet sequence contains ho-
mopolymeric stretches that are longer than h, the condensing process is
lossy in that expanding a condensed sequence does not necessarily give
the original sequence back. This turns out to not be a limiting problem.

http://igraph.org/python

Alignment in the condensed alphabet

The library of sequence alignment methods implemented for
this project operates on sequences of arbitrary alphabets to ac-
commodate for h.p.-condensed sequences and thus any typ-
ical dynamic programming alignment algorithm may pro-
ceed as usual in the condensed alphabet.

Calculation of scores

To obtain substitution and gap scores in the condensed al-
phabet there are, in principle, two alternatives: 1. calculate
substitution probabilities from substitution probabilities in the
original alphabet together with gap probabilities within ho-
mopolymeric stretches and take their log odds against a null
hypothesis as scores, or 2. calculate substitution scores in the
original alphabet first using substitution probabilities. Then
use substitution scores in the original alphabet together with
a homopolymeric gap score to derive substitution scores in

the condensed alphabet.

It is not yet clear how substitution probabilities in the con-
densed alphabet can be systematically derived from those in
the original sequence.* Therefore, we use the second ap-
proach.

The conversion of substitution probabilities to scores in the
original alphabet is the usual log odds calculation. That
is, score of substituting letter by letter y where z,y €
{A,C,G,T) is

S(x — y) = log[(1 — g) Pr(z — y)] — log[Pr(y)]

where ¢ is the gap probability and Pr(y) is the null-
hypothesis probability of y appearing at any position of a

random sequence.

To calculate substitution scores in the condensed alphabet
we proceed as follows: let z;,y; denote any two condensed
alphabet letters. When = = y the substitution cost is

S(xz; — ;) = min(i, 5)S(x — z) + Grp(|i — j])

where Gi(n) = ng, is the linear homopolymeric gap
penalty and when z # y it is

S(x; — y;) = min(i, j)S(z = y) + G(|i — j[)

where G(n) = g, + nge is the usual afhine/linear gap penalty
in the original alphabet.

4The problem definition may very well be ill-posed. For example, con-
sider the problem of aligning AAMAAA and AAACCC. The corresponding
condensed sequences are Ag and A3C3 with no way of out of an align-
ment with 3 indels in the original alphabet.

Content-dependent gap scores

When aligning sequences in the condensed alphabet the
usual linear/athne gap penalty which only takes into consid-
eration the length of a gap has undesirable consequences.
To overcome this, we use gap scores that are confent-
dependent in that the extension score of gaps depends on the
substring that is inserted or deleted. The cost of a gap of
length n inserting or deleting a substring s = (s;); is

G(s)=go+ Y _g(si)
=1

where g(-) is the content-dependent gap score of letter s;.
For letter x;, in the condensed alphabet we have g(z)) =
kge where g, is the usual gap extend score in the original

alphabet.

Seed extension

At first, if possible, we can rule out a portion of read pairs
based on the observation that they have “too few” seeds in
common. The threshold m, of the minimum number of
seeds for a pair of reads to be considered potentially homolo-
gous is naturally dependent on &, the word length and only
applicable when £ is large enough (see section on parame-
ters).

Seed extension is performed by sliding a window along the
two sequences going forward and backward from a given
seed until either the score begins to deteriorate or a sequence
boundary is reached. For this purpose, two special varia-
tions of the Smith-Waterman algorithm are implemented:
start/end-anchored overlap alignments. A start(end)-anchored
alignment is one that is required to begin (end) at the top left
(bottom right) corner and to end (begin) somewhere on the
bottom or right (top or left) edges of the dynamic program-
ming table. A seed is extended forward (backward) by re-
peated start(end)-anchored overlap alignments with a fixed
window size w. Each window is a w x w box in the dynamic
programming table starting (ending) at the exact position
that the last alignment ended (started).

Detecting deteriorating scores is done by means of two pa-
rameters (both dependent on w):

* The drop threshold D,, which is the score threshold for
alignments over a window w x w to be considered

“bad”’

SFor example, the sequences A2C7T3 and A1T}y can get a positive score
despite having a 7-character long gap.

* The max. successive drops M, which is the number of
successive windows where the seed extends “badly” af-
ter which a seed is not further pursued.

Naturally, we need to adjust D,, and M,, to the value of w.
In the results presented here this tuning is only done empiri-
cally. An alternative formulation is discussed in future work.

Safe margins

A common category of f.p.’s is that of those caused by mostly-
overlapping sequences. Two reads are mostly-overlapping if
their correct overlap alignment starts and/or ends very close
to the diagonal of the dynamic programming table. In such
cases the direction of the overlap is not robustly determined
by the optimal alighment hence potentially reversing the di-
rection of a heavy edge in the overlap graph. Due to the high
sensitivity to f.p.’s and the small information content of such
read pairs, we choose to not add an edge (in either direction)
to the graph if two reads are mostly-overlapping.s

Seed extension in the condensed alphabet

The assembly line can be modified in two places to use con-
densed alphabets. During indexing reads can be indexed in
a condensed alphabet and thus seeds are in the condensed
alphabet to begin with. Seed extension can be performed in
the condensed alphabet regardless of whether indexing, too,
was done in the same fashion (and regardless of the h.p. max.
length during indexing). The motivation of seed exten-
sion in the condensed alphabet as been already discussed.
We now consider the consequences of indexing in the con-

densed alphabet.

First, suppose indexing is done using an h.p. max. length
of 1. This has the potential added benefit that we do not
miss any seed because of homopolymeric indels. It also has
the downside of introducing a large amount of noise (all the
seeds that are only seeds because they are h.p.-condensed).
In practice the latter negative force was dominant and since
there is no smooth way of balancing this trade-off (increas-
ing the h.p. max. length to 2 drops an arbitrary number of
seeds) this idea was dropped.

Second, suppose indexing is done in the original alphabet (as
it is a requirement for shift distribution analysis discussed be-
low). Then for seed extension, the seeds themselves must
be condensed which is a non-trivial problem of its own:

¢An alternative would be to add both edges to the graph or to remove one
of the reads entirely from the graph.

1. seed boundaries may not, and typically do not, coincide
with boundaries of homopolymeric stretches, and 2. con-
densing seeds requires recalculating their coordinates in the
condensed sequence which is a computationally demanding
task.

The first problem is dealt with by the following lossy rules:

* If the seed does not begin at a homopolymeric boundary
(e.g. the second 4-mers of AAACC and TAACC) the seed is
ignored.

+ Ifaseed does not end at a homopolymeric boundary (e.g
the first 4-mers of AACCC and AACCT) the longest possible
segment is reported which is exactly-matching up to
its last letter in the condensed alphabet (i.e in previous
example A2C5 and A5Cj is reported as the condensed
segment).

The second problem is dealt with by another lossy rule which
guarantees only a single pass of each read pair to condense
all their seeds: seeds are condensed “in order” and those that
conflict the order are ignored. The following section de-
scribes what this ordering is and what it means for a seed to
conflict the order.

Seed ordering Fix any two reads R; and R;. All seeds
for R, and R; have a natural partial order: Let z and 2’ be
two seeds with starting positions (2;, z;) and (2, 2}) in R;
and R, respectively. Then z and 2’ are comparable if:

(zi = 2)(2 — 25) 2 0

that is, both coordinates have the same order. We can force-
fully extend this partial order to a rotal order by letting = < 2’
if:

/
2 < z;

or if

!

2 =z, and zjgz;-

Consequently, seeds that are not partial-order-comparable
with their immediate total-order predecessors conflict with
the order in the sense that their coordinates cannot be calcu-
lated trivially within the single pass of R; and R;.7

7For example, in the seeds with coordinates (0, 1), (1,4), (2, 2), (2,5) are
in increasing order according to the total-order but the third seed is not
partial-order comparable to the second seed and is thus ignored.

Shift analysis

Now we introduce the second algorithm for overlap discov-
ery with long, low-accuracy reads. Let R; and R; be any
two reads and let them have a set of n seeds {2¥}7_, where
seed 2" has coordinates (zf, z). Let the shifts of the seeds
be {dj}}_, where

_ k k
dp = z; — 2;

Each seed, through its coordinates, implies a certain offset
for the correct overlap alignment of R; and R;. The core
idea is that if R; and R; are actually overlapping reads, there
must be concentration of shift values. That is, if one looks
at the histogram of {dj}}_, there is a certain “peakedness”
close to the correct shift between the sequences. In fact, one
can visually verify that this is typically the case.8

The advantage of this scheme is that one can, in principle, de-
cide whether two reads are overlapping or not without a sin-
gle cycle of computation spent on alignment. The only dif-
ficulty is in formulating a statistical measure of this “peaked-
ness” that successfully differentiates the shift distribution of
strongly overlapping read pairs from the rest. In what fol-
lows we present a simple such measure. There are potential
alternatives discussed in future work.

First note that given the set of shifts {d}}_, for two reads
R; and R; we must have, for every k

—|R;| < di < |R;

We now build the distribution f(-) of shifts by sliding a win-
dow of length L along the set of values such that for any
de{—L—|Rj|,...,|Ri|} we have:

fd)=|{kd<dy<d+L}

We than calculate the peak ratio r; ; for reads R; and R; de-
fined as

max f(d)

> f(d)
where both the max and the sum are taken over all d €
{—=L —|Rj|,....|R;|}. We then classify overlapping and
non-overlapping reads based on a lower cutoff m and an up-
per cutoff M on r; ; such that r; ; < m implies the reads are
not overlapping, r; ; > M implies the reads are overlapping,
and otherwise the test is non-conclusive.

Ti,j

8The most common exception is when two reads are only weakly over-
lapping which is neither surprising nor problematic.

Shift analysis in the condensed alphabet

The “peakedness” of shift distributions is not always sharp,
the main contributing factor to which is the high indel rates
of SMRT sequencing. Therefore, we expect that if seeds are
found in the condensed alphabet the shift analysis approach
cannot be of much use since the coordinates of seeds has even
less of a bearing on the overlap offset of the true alignment.
For this reason, it is preferable to perform seed indexing in
the original alphabet and seed extension in the condensed
alphabet. The caveats of condensing seeds and ways to deal
with them have already been discussed.

Hybrid algorithm

A natural extension of the above scheme is to use seed ex-
tension for those read pairs for which the shift analysis tests
is non-conclusive. We can additionally use the information
obtained in the first step to guide the seed extension phase
by selecting those seeds that are most likely, in the shift-peak
sense, to belong to a correct alignment. Therefore, the hy-
brid algorithm can be described as follows:

i. Find the peak ratio r; ; and conclude if r; ; > M or if
i < m.

ii. If the ratio is neither small or large enough, the seeds
within radius L of the mode shift are considered for ex-
tension.

Implementation and Results

The dataset used to test the algorithms is PacBio generated
reads for chromosome 1 of Leishmania Donovani where
Correct position of reads are inferred using BLAST against
a known reference genome.

Source Code

All code is open and available at
github.com/amirkdv/align.py and documentation as well as

library API can be found at alignpy.readthedocs.org. The

source

dynamic programming algorithm for sequence alignment
as well as the seed extension algorithm are implemented
in C. All core k-mer handling logic (indexing, disk 1O,
etc.) are delegated to SQLite which is a fast, serverless, SQL
database implemented in C. All graph handling (cycle break-
ing, topological sorting of DAG’s, and drawing graphs)
are delegated to igraph which is implemented in C/C++.

https://github.com/amirkdv/align.py
https://alignpy.readthedocs.org
https://www.sqlite.org/
http://igraph.org/python

Everything else is implemented in Python interfacing the C
component via a foreign-function interface and interfacing
SQLite and igraph via existing open source python modules.

Parameters

In all results the following parameters have been empirically

found and fixed:

* Substitution probabilities are 0.02 for all pairs of distinct
nucleotides.

* Gap open and extend probabilities are 0.15 and 0.2, re-
spectively.

* The homopolymeric gap score is -0.2.

* m = 1000, minimum required score for overlap align-
ments as well as the safety margin to guard against
mostly-overlapping reads,

* h =5, the h.p. max. length,

» w = 50, window size for seed extension

* D,, = —20, the drop threshold for seed extension,

* M, = 3, max. successive drops for seed extension,

*+ L = 100, the rolling sum window size for shift distribu-
tion.

06 07 08 09 10

[Non-averlapp
1 Overlapping reads

ing reads

]
S
]
=
S

000

Nuber of matchino §-mers

a6 07 08 09 10

1 Non-overlapping reads
1 Overlapping reads

]
S
<
S
S

1000]
%

Nismber of matching 10-mers

a6 07 08 09 10

1 Non-overlapping reads
1 Overlapping reads

]
S
<
S
S

g g E e

Nismber of matching 12-mers

06 07 08 09 10

1 Non-overlapping reads
1 Overlapping reads

]
S
S
=
S

Number of matching 14-mers

We now consider the behavior of &, the word length of tu-
ples, and the minimum number of seeds m. required for a
pair of reads to be considered potentially homologous. The
first set of diagrams show the distribution of number of seeds
per read-pair for k € {8,10,12,14,16}. We can see that for
k < 12 there is no meaningful choice of m, that does not
immediately cause a baseline of considerable false negative.
This is not surprising since only when using large enough
word lengths can we discard some read pairs simply because
they have too few seeds. For smaller word lengths all read
pairs have a considerable amount of seeds in common.

The next set of diagrams show the distribution of r; ; per
read-pair for k& € {8,10,12,14,16}. We can see that for
k > 12 there is no meaningful choice of m and M, the lower
and upper cutoffs, that can significantly reduce the amount
of computation. This is not surprising since as we increase
k the number of seeds per read-pair decreases and the statis-
tical behavior of shifts is more and more dominated by the
baseline noise to the point that at K = 16 our simple peak
ratio scheme is unable to distinguish overlapping and non-
overlapping reads.

a6 07 08 09 10

]
S
<
S
S

06 07 08 09 10

]
S
S
=
S

06 07 08 09 10

06 07 08 09 10

]
<
S
S
S

|| =0 Overlapping reads

T T T T
1 Non-overlapping reads

41
6

i i
] - © By =))

0

Peal ratios of $-mrer shifis

|| Overlapping reads

i e e e e e e
1 Non-overlapping reads

== O TR R 2
EEEEEEEEEEEEEEE
Peak ratios of 10-mer s

EEEEEEELE

1 Overlapping reads

T T T T T
1 Non-averlapping reads

0
10
2
30
40
50
0L
70
80
€0
100

Peak ratios of 12-mer shiffs

||= Overlapping reads

T
1 Non-overlapping reads

Peak ratios of 14-mer shifts

Results

Table 1 contains preliminary results obtained from finding
the overlap graph of the first 300 reads using various schemes.
First, merely using the h.p.-condensed version of sequences
in seed extension significantly decreases the false negative
rate. Second, Using shift distribution analysis dramatically
reduces the computation time. Third, Shift distribution anal-
ysis is not enough to produce usable results for later stages

and the hybrid algorithm should be considered seriously.

Future work

Faster tuple handling Here are typical amounts of
time spent on each of the 3 main parts of the algorithm (all
numbers are per read pair): 1) fetching seeds: 1ms, 2) analyz-
ing shift distribution: 1ms, 3) seed extension: 100ms.

As long as seed extension is involved for a pair of sequences
the dominant factor in the running time is CPU time spent
on alignment. But when only considering shift distributions
the disk 1O time (spent on fetching seeds) is significant.

Seed extension in linear space and time A po-
tential improvement to seed extension is to drop the 3 non-
conventional tuning parameters w, D,,, and M,, and use the
following scheme: 1. Linear space optimization of the se-
quence alignment is trivial to implement as long as we don’t
wish to traceback the optimal alignment (which is the case
in seed extension.?). This will allow us to drop the rolling
window as the entire forward and backward extension prob-
lems can be solved at once. 2. To enforce a certain quality of
scores banded alignment (which is already implemented) can
be used. This implies linear time complexity in read lengths.

Measuring peakedness in shift distributions 1.
Peak detection is a well-known problem in time series analy-
sis and such algorithms, for example wavelet-based methods,
have been successfully applied in other areas of bioinformat-
ics (Du, Kibbe, and Lin 2006). 2. One can, in principle,
calculate a p-value for each peak by a combinatorial anal-
ysis. The problem in this case reduces to calculating vari-
ations of the probability distribution of success runs in a se-
quence of independent Bernoulli trials (Feller 1971). This

9We do, however, need to know the starting position of the alignment
but this information can be passed down the chain of choices to avoid a
recursive traceback

Table 1: Overlap discovery results

Algorithm k fn. fp. CPU time reads
seed extension in original alphabet 15 72% 1.2% 25,000s 300
seed extension in condensed alphabet 15 37% 0.1% 25,000s 300
shift distribution analysis 10 54% 27% 1,600 s 300

analysis yield complicated and numerically unstable formu-
lae and good approximations are needed. A naive algorithm
which approximates the distribution of success runs by a Bi-
nomial distribution and that by a Normal distribution in the
limit was tested but the approximation was too weak to give
significant p-values for any peak.

Alignment in condensed alphabet As mentioned
above, the problem is not yet mathematically well-defined.
A possible complicated formulation is to allow single letters
to be matched to multiple letters in an alignment. This
requires allowing nonstandard choices in the DP table but
there is a way of maintaining polynomial time complexity
(at most cubic) in the DP algorithm. Much of the complexity
is due to the higher order Markov interaction between posi-
tions of sequences which, however, is already dealt with to
implement the athne gap penalty scheme in quadratic time.

References

Au, Kin Fai et al. (2012). “Improving PacBio Long Read Ac-
curacy by Short Read Alignment”. In: PLoS ONE 7.10,
e46679. por: 10.1371/journal.pone.0046679.

Berlin, Konstantin et al. (2015). “Assembling large genomes
with single-molecule sequencing and locality-sensitive
hashing”. In: Nat Biotech 33.6. Research, pp. 623—-630.

Chaisson, Mark, Pavel Pevzner, and Haixu Tang (2004).
“Fragment assembly with short reads”. In: Bioinformatics
20.13, pp. 2067-2074. por: 10 . 1093/ bioinformatics /
bth205.

Chin, Chen-Shan et al. (2013). “Nonhybrid, finished micro-
bial genome assemblies from long-read SMRT sequenc-
ing data”. In: Nat Meth 10.6. Article, pp. 563-569.

Du, Pan, Warren A. Kibbe, and Simon M. Lin (2006). “Im-
proved peak detection in mass spectrum by incorporating
continuous wavelet transform-based pattern matching”.
In: Bioinformatics 22.17, pp. 2059-2065. por: 10.1093/
bioinformatics/btl355.

Eades, Peter, Xuemin Lin, and W.F. Smyth (1993). “A fast
and effective heuristic for the feedback arc set problem”.
In: Information Processing Letters 47.6, pp. 319 =323. por:
hetp://dx.doi.org/10.1016/0020-0190(93)90079-O.

Feller, W. (1971). An introduction to probability theory and its
applications. Wiley series in probability and mathematical
statistics: Probability and mathematical statistics. Wiley.

Festa, Paola, PanosM. Pardalos, and MauricioG.C. Resende
(1999). “Feedback Set Problems”. English. In: Handbook
ofCombinatorial Optimization. Ed. by Ding—Zhu Du and
PanosM. Pardalos. Springer US, pp. 209-258. por: 10.
1007/978-1-4757-3023-4_4.

Koren, Sergey et al. (2012). “Hybrid error correction and de
novo assembly of single-molecule sequencing reads”. In:
Nat Biotech 30.7, pp- 693-700. por: 10.1038/nbt.2280.

Pavel A. Pevzner Haixu Tang, Michael S. Waterman (2001).
“An Eulerian Path Approach to DNA Fragment Assem-
bly”. In: Proceedings of the National Academy of Sciences of
the United States ofAmerica 98.17, pp. 9748-9753.

http://dx.doi.org/10.1371/journal.pone.0046679
http://dx.doi.org/10.1093/bioinformatics/bth205
http://dx.doi.org/10.1093/bioinformatics/bth205
http://dx.doi.org/10.1093/bioinformatics/btl355
http://dx.doi.org/10.1093/bioinformatics/btl355
http://dx.doi.org/http://dx.doi.org/10.1016/0020-0190(93)90079-O
http://dx.doi.org/10.1007/978-1-4757-3023-4_4
http://dx.doi.org/10.1007/978-1-4757-3023-4_4
http://dx.doi.org/10.1038/nbt.2280

	Background
	Problem Definition and Scope
	Cycle breaking

	Framework and Terminology
	Alphabet translation
	Alignment in the condensed alphabet
	Calculation of scores
	Content-dependent gap scores

	Seed extension
	Safe margins
	Seed extension in the condensed alphabet

	Shift analysis
	Shift analysis in the condensed alphabet
	Hybrid algorithm

	Implementation and Results
	Source Code
	Parameters
	Results

	Future work

