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abstract In an earlier report we considered the statistical properties of diagonal distances (aka "shifis”) among
seeds of overlapping sequences. A probabilistic model of diagonal distances is needed for two reasons: first, to find
the width of diagonal strips to analyze when testing the overlapping hypothesis, and second, to find the radius of
the banded overlap alz;gnment‘ Here, we complete the statistical analysis of diagonal distances and introduce the

corresponding analysis for seed distances along diagonals which is needed for chaining.
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Diagonal Distance

The diagonal distance between two seeds is precisely what we formerly refered to as shifts.
We found a recurrence relation for the probability of an alignment of length T leaving a
band of radius r and demonstrated, via a random walk model, that the recurrence relation is
a stable finite difference scheme for a diffusion IBVP. The idea is to approximate the solution
of the recurrence relation by the analytic solution of the IBVP (the reverse of what one does
in numerical solution of differential equations). Furthermore, since we wish to optimize over
the domain of the PDE we need solutions that are computationally easy to invert. To this end,
we proposed an approximation of the IBVP by ignoring the boundary conditions. The goal
of this section is to justify this approximation.



Original Problem Given some 7 > 0 let P, be the following IBVP:

Ut — Plugy =0
u(zx,0) =1over (—r,r)
u(=£r,t) =0

For given T > 0 and ¢ < 1, we wish to find the smallest 7* such that the solution u of P,
satisfies:
w0, T) >1—¢

Fourier transform is not applicable due to the boundary conditions and the solution found by

separation of variables gives:

o0

~ (-1" (n+3)m
MO =2 Gy ("’Tr>

n=0

which, though exact, is not analytically invertible in r. For convenience, from here on we let

Z be the differential operator .Z = 8; — pdyy.

Proposition (Approximate Problem): Let P, be the following IVP obtained by relaxing the
boundary condition of P:

Ly =0
u(x,0) =1over (—7r,r1)
Dehfine r* to be:

r* =2/pTerf (1 —¢)

Then the solution @ of P, satisfies:
a0, T) > 1—¢

proof : For P, Fourier transform would be applicable yielding the solution: @ = @ * 4(z,0)
where the convolution is over z and @ is the diffusion kernel:

1 ( z2 )
L exp(—
VAmpt P 4dpt

At any time ¢, this is precisely the probability density function of .#(0, /2pt) with cumulative

O(x,t) =

distribution:

1 T
F(z;t) = 5 [1+erf (W)]

Thus:

implying:
r
4(0,T) = erf
o = (2 m)
Noting that erf is a monotonically increasing function completes the proof. [ ]



Remark The formula for @(z,t) simplifies at x = 0 and at x = £

A - r A _1 _r
(0, t) = erf <2\/ﬁ) and G(Er,t) = 2erf ( \/[Tt) (1)

Proposition (Accuracy of approximation): Let r* be such that the solution @(z,t) of the ap-

proximate [VP P, satisfies:
w(0,T)>1—¢€

Then the solution u(x, t) of the exact IBVP P, satisfies:
3
u(0, 7)) >1— 56

proof : Define the residue v(z,t) = @(z,t) — u(z, t). Clearly, we have v(z,t) > 0 for all z and

t > 0 and we wish to show:

v(0,T) < %e
We know that v satisfies the IBVP:
L =0
v(x,0) =0over (—r,7)

o(£r, ) = (1)

where, using (1), we have defined:

f@) = a(Er,t) = %erf (\/rﬁ)

with f(0) = 1/2 to maintain continuity. Now define h(z, ) for t > 0 by
h(z,t) = f(t) —v(x,t)
The function h satisfies the IBVP:
Zh =f
h(z,0) = % over (—r,r)
h(+rt) =0

The solution is the sum of a particular solution and a homogenous solution:
h(z,t) = %a(:c,t) +[@ % floe
where the convolution is over both = and #:
[@ * f]zt = /t /OO O(x —y,t — s)f(s)dyds
0 J-

Therefore:

T oo
h(0,T) = ﬁ(O,T)+/ f(s)/ Oy, T — s)dyds
0 —00

1
2
1

= (0, T " d—lAOT T 1
= S0, >+/0 fs)ds = S0, T) + (1) —

where in the last step we have used the fact that ®(-, ¢) is a probability distribution over R for
any t. Finally:
v(0,T) = f(T) — h(0,T) = %(1 —(0,7)) < %6



Corollary  (Approximation Algorithm): It follows that if r* is defined as:

r* =2+/pTerf™! (1 — 26)

3

then the solution u of P,+ satishes:

w(0,T7) >1—¢

band randius = 457 for e = 0.0010 after K = 10000 steps
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Seed Chaining

We now consider the following problem: given a set of seeds within a diagonal strip of the
dynamic programming table, which partial overlap alignment maximizes the likelihood of the
observed seeds, where a partial overlap alignment is a sequence of chainable seeds. This can
be reduced (detailed analysis will follow in another report) to a heaviest-path problem over
the DAG of all seeds in the given diagonal strip where the weight of edges connecting two
seeds is obtained from calculating the the probability that a sub-alignment of length n does not
contain any seeds of length k and. We noted earlier that this corresponds to the probability
distribution of waiting times between runs of k successes in a sequence of i.i.d Bernoulli trials
(where k is the word length). Some combinatorial properties of this distribution, known as the
k-th order geometric distribution, are known but they are not computationally useful. We here
propose an exact algorithm to calculate this distribution efhciently.

Computational Requirements We seek the probability distibution f(n;w) of a sub-
alignment of length n containing no seed of length w. However, as opposed to the diagonal
distance case, we do not have the complication of dependence on diagonal position. Therefore,

it sufhces to solve a recurrence relation once and use the results for all sequence comparisons.



Probabilistic Model Consider the following Markov chain where w is the word length and
p is the probability of an exact match at any given position of the alignment:

Let u(n, k) be the probability of being at state n at time k. Since u(n, w) is the probability
of observing a seed by the n-th step of the alignment the desired distribution f(n) is given by:

f(n;w) =1 —u(n,w)
The recurrence relation of u(n, k) for 0 < n < w is:
u(n, k) =pu(n —1,k—1)
with boundary and initial conditions:
w(w, k) = puw — 1,k — 1) +u(w, k — 1)

w
u(0,k)=1-> " p(n,k)
n=1

We know that f(n;w) is decreasing and thus, in practice, we only need to calculate f(n)
upto some threshold, say for all n such that f(n; w) > e. We then solve the recurrence relation
in increasing order of n and decreasing order of k as long as u(n, w) < 1 — e. The following
is a plot of u(n,w) for w = 10, p = 0.85, and € = 1073, Since the very same distribution is
used for all sequence comparisons the computational cost is effectively zero.
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Mapping Bands to Rectangular Grids

In order to only allocate the necessary memory for the banded overlap alignment we need
to map bands (diagonal strips) to rectangular grids in memory. This requires a change of
coordinates which maps parallelograms or trapezoids bound by the edges of the dynamic pro-
gramming table to (roughly) rectangular regions. Two alternatives were previously discussed.
Here, we present a refined version of the more convenient of the two: coordinates based on
shift and distance from diagonal start cell:

Yy 0 a
O\

s\
\\
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Let (z,y) denote coordinates in the dynamic programming table and (d, a) denote the new

Xz



coordinates where d is the shift 2 — y and a is the distance along the starting cell of the d-
diagonal. The change of coordinates mapping is given by ¢ : Z? — Z:

(2,9) = (2 = y, min(z, )
(a + max(d, 0),a — min(d, 0)) <¢)—71 (d,a)
Furthermore, the length of the row at height d in the transformed coordinates is:
L(d) = min(|S| — d,|T]) + min(d, 0) + 1
The alignment band Q is the subset of the grid that needs to be populated. We have:

sz = {(xvy)Qdmin <z—-y< dmax}
Qaq = {(dv a);dmin < d < drnax}

Dynamic programming dependence rules depend on the sign of d:
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For simplicity, we populate the dynamic programming table in the natural order of (z, y)-
coordinates (while memory is mapped in (d, a)-system). To avoid sweeping the entire (z,y)-
grid for in-band cells we use the following bounds:

V(z,y) € Q :max(0, dmin) <z < min(|S|, |T| + dmax)
V(z,y) € Q:max(0,z — dmax) <y <min(|T|,z — dmin)
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