
Linear Algebra Fact Sheet I

Amir Kadivar, October 2017

Warning: This is not intended for learning or for memorization; only use it to review what
you have already learned or to find gaps in your knowledge. Notation: numbers (scalars) are
denoted by a, x, α, . . . and matrices by A, B, C . . . We write Am×n to indicate that A has m

rows and n columns. Single column matrices (vectors) are denoted by bold letters b, x . . .. An
all-zero matrix (or vector) is denoted by 0 and its dimensions are to be understood from context.

I Matrix arithmetic

1. If α is a scalar then αAm×n is the matrix obtained by multiplying all entries in A by α; i.e αA is
an m× n matrix whose entries are αaij .

2. The sum Am×n + Bp×q is defined iff A and B have identical dimensions, i.e m = p and n = q. In
this case A +B has the same dimensions and has aij + bij at row i and column j.

3. We always have: A +B = B +A, αA + βA = (α + β)A, α(A +B) = αA + αB

4. The product Am×nBp×q is defined iff n = p in which case the dimensions of the product is m× q.
The j-th column of AB is equal to ABj where Bj is the j-th column of B. The i-th row of AB is
equal to AiB where Ai is the i-th row of A.

5. We always have: A(BC) = (AB)C, A(B + C) = AB +AC, (αA)B = A(αB) = α(AB)
6. For any Am×n we have AIm = InA = A. However, it is not generally true that AB = BA.
7. A matrix Am×n is square if m = n. A square matrix An×n is diagonal if all its off-diagonal entries
are zero, i.e aij = 0 for all i , j. The diagonal entries of a diagonal matrix may or may not be zero.
The identity matrix In is an n× n diagonal matrix all whose diagonal entries aii are 1.

8. The transpose of a matrix Am×n, denoted by AT , is an n×m matrix whose rows are the columns
of A and whose columns are the rows of A. The entry at row i and column j of AT is aji.

9. We always have:(
AT )T

= A,
(
αA

)T
= αAT ,

(
A +B

)T
= AT

+BT ,
(
AB

)T
= BT AT

10. Multiplying a matrix Am×n by a diagonal matrix from the left (right) multiplies each of its rows
(columns) by the corresponding diagonal entry:d1

. . .

dm


 A1

...

Am

 =
 d1A1

...

dmAm

 , and
(
A1 · · · An

) d1
. . .

dn

 = (
d1A1 · · · dnAn

)
and as a special case, we always have: (αIm)A = A(αIn) = αAm×n.

II Systems of linear equations

1. A system of m linear equations in n variables (or unknowns) is a collection of linear equations
ai1x1 + . . . + ainxn = bi for i = 1, . . . , m where aij and bi are given. A solution to a system is a
collection of n numbers x1, . . . , xn that satisfy all equations in the system. This can be summarized
in matrix notation as Am×nx = b where A is the matrix of coefficients and:

A =

 a11 · · · a1n

...
. . .

...

am1 · · · amn

 , x =

x1
...

xn

 , b =

 b1
...

bm


2. The system Ax = b is called homogeneous if b = 0 and inhomogeneous otherwise.
3. A homogeneous system always has a solution (x = 0 is always a solution). If x = 0 is a solution to
a system it is referred to as the trivial solution. A homogenous system always has a trivial solution
and an inhomogenous system never has a trivial solution.

4. If the system Am×nx = b has more than one solution it automatically has infinitely many solutions
which can be expressed parametrically. For example, a one parameter solution set has the form
x = y◦ + sy1 where s can be any number (the parameter); a two parameter solution set has the
form x = y◦ + sy1 + ty2 where the parameters s, t can be any two numbers; and so on. The choice
of parameterization is not unique; in fact, there are always infinitely many parameterizations.
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5. For book-keeping purposes we form an augmented matrix by adding b as an additional column of
Am×n and denote it by (A|b).

6. We can combine the equations in a system to simplify our calculation and to gain insight into its
solution set. Elementary row operations are a special class of operations that do not modify the
solution set of a system. There are three types of elementary row operations:
• swapping two rows Ri ↔ Rj ,
• multiplying a row by a nonzero scalar Ri ← αRi,
• adding a row to another Ri ← Ri +Rj .

7. The leading nonzero entry in row i of a matrix Am×n is the leftmost entry in the i-th row of A

that is nonzero. If the leading nonzero is 1 we refer to it as the leading one.
8. A matrix Am×n is in row echelon form iff:

• all-zero rows are all below other rows, and
• the leading nonzero of any row is to the left of the leading nonzeros of all rows below it.

9. Row echelon form can be obtained by applying elementary row operations as long as there are any
two rows with leading nonzeros in the same column. In this case either of the two leading nonzeros
can be made zero using the the other.

10. A matrix Am×n is in reduced row echelon form iff:
• it is in row echelon form, and
• all leading nonzeros are ones (hence leading ones), and
• for every leading one all other entries in its column are zero.

11. The reduced row echelon form of a matrix is always unique but the row echelon form is not.
However, all important properties of a matrix can be read directly off of either of its row echelon
forms (including the unique reduced row echelon form).

12. The rank r of a matrix Am×n is (equivalent definitions):
• the number of rows that are not all-zero in row echelon form (reduced or not).
• the number of leading nonzeros in row echelon form (reduced or not).
• the number of leading ones in reduced row echelon form.

13. If the rank of Am×n is r we always have r ≤ n and r ≤ m, i.e rank can not exceed either of the
dimensions of the matrix.

14. A system Am×nx = b is consistent iff in its row echelon form we have (equivalent definitions):
• for every all-zero row in the coefficients matrix, the corresponding right-hand-side is zero.
• the rank of the coefficients matrix is the same as the rank of the augmented matrix.

15. A homogenous system is always consistent; an inhomogeneous system may or may not be.
16. Consider the system Am×nx = b where the rank of Am×n is r:

• a solution exists iff the system is consistent.
• the solution is unique iff the system is consistent and r = n.
• there are infinitely many solutions if the system is consistent and r < n in which case the
solutions can be described parametrically using precisely n− r parameters.

17. Among consistency, rank, and number of parameters needed to describe solutions, the right-hand-
side b only affects consistency (and hence existence of solutions). The rank and the number of
parameters are completely determined by the matrix of coefficients Am×n regardless of b.

18. The effect of each elementary row operation on the system Am×nx = b can be represented in
matrix language by multiplying the coefficients matrix A and b by an elementary matrix Em×m

from the left: (
A|b

)
→ E

(
A|b

)
=

(
EA|Eb

)
19. The elementary matrix corresponding to an elementary operation on Am×n can be obtained by

applying the same row operation on the identity matrix Im.
20. All elementary matrices are invertible and their inverses correspond to the inverse row operation:

• The inverse of Ri ↔ Rj is itself.
• The inverse of Ri ← αRi is Ri ← 1

α Ri.
• The inverse of Ri ← Ri +Rj is Ri ← Ri −Rj .

21. The effect of applying k elementary row operations, represented by elementary matrices E1, . . . , Ek,
is equivalent to left-multiplication by the product matrix Ek . . . E2E1, namely:(

A|b
)
→ E1

(
A|b

)
→ E2E1

(
A|b

)
→ · · · → Ek . . . E2E1

(
A|b

)
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III Invertible matrices and determinants

1. Here we are only concerned with square matrices. The inverse of An×n is another matrix A−1
n×n

which “undoes” the effect of A, namely: AA−1 = A−1A = In. An inverse, if it exists, is unique. We
only need to check one of the above equalities (i.e. if AA−1 = I then A−1A is automatically I).

2. We always have:(
AT )−1

=
(
A−1)T

,
(
AB

)−1
= B−1A−1,

(
αA

)−1
=

1
α

A−1

There is no relationship in general between (A + B)−1 and A−1, B−1. In fact A + B may not be
invertible even if both A and B are.

3. If A is invertible then any system Ax = b (homogenous or not) has a unique solution given by
x = A−1b.

4. If An×n is invertible then its reduced row echelon form is necessarily In and we have:(
An×n|In

)
→

(
E1A|E1

)
→ · · · →

(
Ek . . . E1A|Ek . . . E1

)
=

(
In|A−1)

5. The product Ek . . . E2E1 of elementary row operations that bring a matrix A to reduced row
echelon form is exactly its inverse A−1 = Ek . . . E1.

6. The inverse of an elementary matrix is also an elementary matrix. Therefore if A−1 = Ek . . . E1
then A can be written as a product of elementary matrices A = E−1

1 . . . E−1
k .

7. The determinant of a square matrix is a number that satisfies the following properties:
• the determinant of the identity matrix is 1.
• multiplying any single row or any single column by α multiplies the determinant by α.
• swapping any two rows or any two columns flips the sign of the determinant.

8. Adding a multiple of a row (or column) to another does not affect the determinant. Therefore, if a
matrix has two rows (or columns) that are scalar multiples of each other, its determinant is zero.

9. The (i, j)-minor of a An×n is the determinant of the (n− 1)× (n− 1) matrix obtained from A by
excluding row i and column j of A. The (i, j)-cofactor of A denoted by cij is (−1)i+j times the
corresponding minor.

10. The collection of all cofactors cij forms the cofactor matrix whose transpose is called the adjoint
matrix adj(A). Both the cofactor matrix and the adjoint matrix have the same dimensions as A.
Entry at row i and column j of adj(A) is the (j, i)-cofactor cji.

11. Any row or column of A can be used to calculate its determinant in terms of a row or column of
its cofactors. For any row i or column j we have:

det(A) = ai1ci1 + ai2ci2 + . . . + aincin = a1jc1j + a2jc2j + . . . + anjcnj

12. We always have:

det(AB) = det(A) det(B), det
(
A−1)

=
1

det A

det
(
αAn×n

)
= αn det

(
A

)
, det

(
AT )

= det
(
A

)
13. There is no relationship in general between det(A +B) and det(A) and det(B).
14. We always have:

A adj(A) = det(A)I, det
(
adj(An×n)

)
= det(A)n−1

15. If A is invertible the above imply: A−1 = 1
det(A) adj(A).

16. The following statements are equivalent (all pairs are “if and only if”):
• An×n is invertible.
• The system Ax = b has a unique solution for any b.
• The homogenous system Ax = 0 has a unique solution (i.e. the trivial solution).
• The reduced row echelon form of A is In.
• A is a product of elementary matrices.
• det(A) , 0.

IV Eigenvalues, eigenvectors, and diagonalizable matrices

1. A vector x is an eigenvector for eigenvalue λ of a matrix An×n if we have Ax = λx. A number λ

is an eigenvalue of A if it has a nonzero eigenvector, i.e. x , 0 such that Ax = λx.
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2. The equation Ax = λx can always be rewritten as a homogenous system (A − λIn)x = 0 or
(λIn−A)x = 0. Consequently, λ is an eigenvalue of A if the corresponding system with coefficients
λIn −A has a nontrivial solution; hence, any eigenvalue has infinitely many eigenvectors.

3. A matrix An×n has at most n and at least 0 eigenvalues. Both extremes are possible (A may have
exactly n or 0 eigenvalues).

4. If λ is an eigenvalue of A then the infinitely many solutions to (λIn − A)x = 0, which are the
eigenvectors of λ, can be described parametrically.

5. The geometric multiplicity of an eigenvalue λ of An×n is (equivalent definitions):
• The number of parameters needed to describe the solutions of (λIn −A)x = 0.
• the difference n− r where r is the rank of λIn −A.

6. det(λIn − A) is a polynomial in λ of degree n and is called the characteristic polynomial of A. Its
real roots are precisely the eigenvalues of A.

7. The following statements are equivalent (all pairs are “if and only if”):
• λ is an eigenvalue of A.
• The homogenous system (λIn−A)x = 0 has a nontrivial solution (and hence infinitely many).
• λIn −A is not invertible.
• det(λIn −A) = 0.
• λ is a real root of the characteristic polynomial of A.

8. We know that any polynomial of degree n can be decomposed into first order and second order
factors. First order factors specify all the real roots. Therefore, the factorization of the characteristic
polynomial cA(λ) = (λ − λ1)k1 (λ − λ2)k2 . . . (λ2 + a1λ + b1) . . . specifies all eigenvalues: any first
order factor (λ− λi)ki specifies a distinct eigenvalue λi whose algebraic multiplicity is ki.

9. The sum of algebraic multiplicities of all eigenvalues is at most n and is strictly less than n iff there
are any second order factors (e.g. λ2 + 1) in the final factorization of cA(λ).

10. For any eigenvalue both geometric and algebraic multiplicities are at least 1. Furthermore, the
geometric multiplicity of any eigenvalue is always at most equal to its algebraic multiplicity. Con-
sequently, if the algebraic multiplicity of an eigenvalue is 1 its geometric multiplicity is also 1.

11. A matrix An×n is diagonalizable if (equivalent definitions):
• there exists an invertible matrix Pn×n and a diagonal matrix Dn×n such that A = P DP −1.
• the characteristic polynomial cA(λ) has no complex roots (i.e. first order factors only) and the
geometric multiplicity of each eigenvalue matches its algebraic multiplicity.

• the sum of geometric multiplicities of eigenvalues of A equals n.
12. If the characteristic polynomial of An×n has n distinct real roots then A is diagonalizable. The

converse is not true, i.e. A could be diagonalizable without having distinct eigenvalues (e.g. the
identity matrix).

13. If A = P DP −1 the diagonal entries of D are necessarily eigenvalues of A, the columns of P are
corresponding eigenvectors, and the algebraic and geometric multiplicity of each eigenvalue matches
the number of times it repeats on the diagonal of D.

14. If λ1, λ2, . . . are eigenvalues of A with algebraic and geometric multiplicities k1, k2, . . . such that
k1 + k2 + . . . = n, then we can construct P and D such that A = P DP −1 as follows. For each
eigenvalue λi we find a parametric description of its eigenvectors using ki parameters and ki basic
eigenvectors. If we let Pn×n be the matrix with all basic eigenvectors as its columns and the
matrix Dn×n be the diagonal matrix with the corresponding eigenvalues (in correct order) then P

is necessarily an invertible matrix and we have A = P DP −1.

V Case Study: Diagonal matrices

Let Dn×n be a diagonal matrix with diagonal entries d1, . . . , dn.

1. For any k in N, the k-th power Dk is another n×n diagonal matrix with diagonal entries dk
1 , . . . , dk

n.
2. The rank of D is the number of its nonzero diagonal entries.
3. The determinant of D is the product d1 . . . dn of its diagonal entries. Consequently, D is invertible
iff all di are nonzero. In this case, D−1 is the diagonal matrix with entries 1/d1, . . . , 1/dn.

4. D is diagonalizable regardless of the values of di (it is already diagonal; to check definition set P = I).
The eigenvalues of D are d1, . . . , dn where repeats reflect the multiplicity of each eigenvalue.

5. A diagonalizable matrix A = P DP −1 is invertible iff D, the diagonal matrix of its eigenvalues, is
invertible, i.e iff all eigenvalues of A are nonzero. In this case, we have A−1 = P D−1P −1.
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