
These are my notes on basic measure theory. For each claim at least a sketch of proof is given unless:
the claim can be established as a brute force exercise of applying definitions, or it has a long or otherwise
”difficult” proof. The latter case is indicated by an asterisk.
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0.0.0.1 Notation

The set of non-negative reals is denoted by R+ and the extended non-negative reals is denoted by [0, ∞]. The
length of an interval (or otherwise the “standard” measure of a set) I is denoted by |I| and the number of
elements in a finite set A is denoted by #(A). The power set of X is denoted by P (X) and the complement
of a subset A ⊂ X is denoted by Ac. The closure and interior of A is denoted by Ā and A◦ respectively.
Subset relation is indicated by ⊂ and ⊆ is avoided. Disjointness of unions are expressed in words and

⨿
is

avoided. The indicator function of a set A is denoted by 1A and χA is avoided. The preimage of a function
is denoted by f−1(·), that is for any X we mean f−1(X) = {x : f (x) ∈ X}. “Quotes” are used for abuses of
notation or informal definitions.

1 Measures and Integration

1.1 Motivation

Here are four problems we wish to solve with the machinery of measure theory:

1. If two functions agree except at a countable number of points (e.g. f and f + 1Q for any f), they will
not agree on Riemann-integrability, let alone the value of their integrals, despite the fact that they
agree on a “much larger” set than the set on which they disagree. The “Lebesgue philosophy” is to
ignore “negligible sets” (see below).

2. Additionally, we seek a “consistent” way of assigning measures to subsets of Rd 1. Let us demand: i)
the measure of “ordinary” sets should coincide with what we ordinarily assign to them as length, area,
volume, ii) the measure of a set must be non-negative and zero for the empty set, iii) the measure of a
countable disjoint union should equal the sum of its components’ measures 2, and iv) the assignment
of measure must be translation invariant, i.e “|A| = |x +A|” for any set A and any point x ∈ Rd.

1This is a separate issue from 1 which is concerned with negligbility of countable subsets of Rd. For instance, as we will see it
is not obvious how to assign measures such that the Cantor sets gets a measure of 0 and the fat Cantor set gets a measure
of 1

2 , as intuitively expected (these two sets are both uncountable).
2Note that we do not wish this to be true of uncountable disjoint unions since any interval can be written as such.
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3. It turns out that, under the axiom of choice, it is not possible to assign to all subsets of R a “consistent”
measure 3 as demonstrated by the Vitali Theorem: Under ZFC, R has nonmeasurable sets (cf. Vitali
sets).

4. As a consequence of 3, we also need to demand that the set of measurable sets be “well behaved” in
the sense that it is closed under reasonable set operations. Let us demand that the set of measurable
sets be closed under all basic set operations, i.e ∩, ∪,∆, \,c. This would imply, by induction, that it
must also be closed under finitely many applications of set operations. We will see that demanding
only this much would correspond to the limitations of Riemann integration. In order to fix 1 we would
need to allow also countably infinite applications of set operations 4.

1.1.0.1 Negligible sets

We can define negligible sets consistently without invoking any abstract measure theory. A set A ⊂ R is
null or negligible (in the Lebesgue sense 5) if it can be covered by a countable union of intervals whose sum
of lengths can be made arbitrarily small. Specifically, M ⊂ R is negligible if for any ϵ > 0 there exists a
sequence of intervals Ik ⊂ R such that M ⊂

∪
k Ik and

∑
k |Ik| < ϵ.

1.1.1

Our goal in measure theory is to find a “large enough” family of subsets, namely measurable sets, over which
a “consistent” measure can be defined. Note that within the scope of these notes there is no ambiguity on
assigning measures to building block sets (e.g. intervals). It is the set of measurable sets which we have to
carefully craft to make sure all the desirable requirements are satisfied while avoiding problems with the
axiom of choice. In this sense, when there is an obvious choice of measure for building block sets we consider
a description of measurable sets under a measure to uniquely define the measure itself.

In this section we mostly follow [1] and [2]. We first introduce, as grounding examples, simple “measures”
than do not satisfy all the requirements, hence the quotes around elementary “measure” and Jordan “measure”
6.

1.2 Elementary “measure”

In this section we make concrete the idea that: elementary sets are finite collections of boxes and their
intuitive assignment of measure is well-defined.

1.2.0.1 Definition

3The axiom of choice is in fact necessary for this issue to arise as there are no constructive examples of nonmeasurable sets.
In fact, the Solovay model shows that ZF together with an axiom of dependent chocie can be consistent with the demand
that all subsets of Rd be measurable if ZFC were to be consistent with the existence of an inaccessible cardinal.

4Note that we do not wish this to be true of uncountable applications of set operations as that would lead to nonmeasurable
sets yet again.

5By this we mean, this is the notion of negligibility due to Lebesgue (the person) and not the property of having Lebesgue-
measure 0, although the two are equivalent.

6These are both examples of what is technically called a content.
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An interval in R has either of the forms [a, b), [a, b], (a, b), (a, b] (note that degenerate single point intervals
are allowed). A box in Rd is a set of the form I1 × I2 × . . . Id where Ik are all intervals. An elementary set in
Rd is one that can be expressed as a finite union of (potentially overlapping) boxes. For an interval I with
endpoints a ≤ b its length is defined to be |I| = b − a. For a box B = I1 × I2 × . . . × Id its volume is defined
to be |B| = |I1| × |I2| × . . . |Id|.

1.2.0.2 Proposition

Closure properties of elementary sets: Elementary sets in Rd are closed under all basic binary set operations
∩, ∪, \,∆ and under translation (i.e if E is elementary x + E is elementary for any x ∈ Rd).

1.2.0.3 Proposition

Discretization lemma: For any interval I ⊂ R we have:

|I| = lim
n→∞

1
n

#
(

I ∩ 1
n
Z

)
Similarly, for any box B in Rd we have:

|B| = lim
n→∞

1
nd

#
(

B ∩ 1
nd
Zd

)

proof : Let the end points of I be a < b (when a = b both the RHS and LHS are trivially zero) and define
in = #(I∩ 1

nZ). We must have 1
n (in−1) ≤ b−a and 1

n (in+1) ≥ b−a and thus (b−a)− 1
n ≤ 1

n in ≤ (b−a)n+ 1
n .

The squeeze theorem now establishes the result for intervals. The corresponding claim for a box can be
established by decomposing the box into the Cartesian product of d intervals. ■

1.2.0.4 Proposition

Well-definedness of elementary measure: Any elementary set E = B1 ∪B2 . . .∪Bn can be written as a disjoint
union E = B′

1 ∪ B′
2 . . . ∪ B′

n′ . Furthermore, the value of
∑

k |B′
k| is independent of the choice of the B′

k.

proof : The first claim can be established by induction on n: the union of any n elementary sets can be
written as a disjoint elementary union. The second claim follows from the discretization lemma. ■

1.2.0.5 Definition

For any elementary set E =
∪

k Bk its elementary “measure” m(E) is defined to be
∑

k |B′
k| where the B′

k

are disjoint and satisfy E =
∪

k B′
k. We drop the quotes henceforth for convenience.

1.2.0.6 Proposition

Properties of elementary measure: The elementary measure as defined above is:

i. finitely additive, i.e for any n disjoint elementary sets E1, . . . , En we have m(
∪

k Ek) =
∑

k m(Ek),
ii. finitely subadditive, i.e for any n elementary sets (possibly overlapping) E1, . . . , En we have m(

∪
k Ek) ≤∑

k m(Ek), and
iii. translation invariant, i.e for any x ∈ Rd and any elementary set E we have m(x + E) = m(E).
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1.2.0.7 Proposition

Uniqueness of elementary measure: Any non-negative function m′(·) over elementary sets in Rd satisfying the
three properties of the above proposition (finite additivity, finite subadditivity, and translation invariance)
agrees everywhere with the elementary measure m(·) everywhere upto a scaling factor.

proof : Let α = m′ ([0, 1)d
)
. By finite additivity and translation invariance, for any n ∈ N we have

m′ ([0, 1
n )d
)
= n−dα. Now applying the discretization lemma shows m′(E) = αm(E) for any elementary

set. ■

1.3 Jordan “measure”

Elementary sets are all box-like and rather restrictive, e.g. neither a triangle nor a circle are elementary sets.
However, both these examples can be approximated by elementary sets with arbitrary precision. The Jordan
“measure” formalizes this approximation. As always, we only need to specify the set of Jordan-measurable
sets and note those set operations under which this set is closed. It is, however, more intuitive to define
the measure function directly as an extension of the underlying measure (i.e it must agree with elementary
measure over elementary sets) and see what additional subsets of Rd are recovered as measurable:

1.3.0.1 Definition

For any M ∈ Rd define the Jordan inner measure m∗,J and the Jordan outer measure m∗,J as follows 7:

m∗,J (M ) = sup
E⊂M

m(E) and m∗,J (M ) = inf
E⊃M

m(E)

where the supremum and infimum are over elementary sets E and m is the elementary measure. The set M

is Jordan-measurable if the inner and outer Jordan measures agree.

1.3.0.2 Proposition

Closure properties of Jordan-measurable sets: The set of Jordan measurable sets in Rd is closed under all
basic binary set operations ∩, ∪, \,∆.

1.3.0.3 Remarks

1) If we extend the real line with infinity then the inner and outer measures are well defined for every set in
Rd and not just for Jordan-measurable ones.

2) Clearly, the Jordan measure is an extension of the elementary measure in the sense that any elementary
sets is Jordan measurable with the same measure (this follows from finite additivity of the elementary
measure applied to the RHS of the definition of inner and outer measures). We can therefore safely let m(·)
also represent the Jordan measure in unambiguous contexts.

3) One obvious case where a set is not Jordan-measurable is when either the inner and outer Jordan measure
are ∞ which happens iff M is unbounded. However, we will see that there are bounded sets in Rd that are
not Jordan-measurable.

7Again, technically, “content” is the right word, not “measure”.
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4) If we were to allow ∞ to be a valid Jordan measure (with the criteria that both inner and outer measures
are ∞) then the compliment of a Jordan-measurable set is also Jordan-measurable.

1.3.0.4 Proposition

Properties of Jordan measure: The Jordan measure is finitely additive (and thus finitely subadditive) and
translation invariant. Additionally, for any M ⊂ Rd we have:

m∗,J
(
M
)
= m∗,J (M ) and m∗,J (M◦) = m∗,J (M )

In words: any set M has the same Jordan outer measure as its closure M and the same Jordan inner measure
as its interior M◦. As a corollary, M is Jordan-measurble iff its topological boundary ∂M has outer Jordan
measure 0.

proof : The steps are simpler versions of the proof of a stronger proposition for the Lebesgue outer measure
(see below). ■

1.3.0.5 Proposition

Uniqueness of Jordan measure: Any non-negative function m′(·) over Jordan-measurable sets in Rd satisfying
the three properties of the above proposition (finite additivity, finite subadditivity, and translation invariance)
agrees everywhere with the Jordan measure m(·) everywhere upto a scaling factor.

proof : The same procedure we used to prove the uniqness of elementary measure applies. ■.

1.3.0.6 Proposition

Examples of (non-)Jordan-measurable sets: i) The following are Jordan-measurable: ordinary Cantor sets
(cf. appendix on Cantor sets), compact convex polytopes in Rd, and open or closed balls in Rd. ii) The
following are not Jordan-measurable: fat Cantor sets, [0, 1]d ∩ Qd, and

∪
n∈N[n, n + 2−n]. Specifically, the

countable union of Jordan-measurable sets is not necessarily Jordan-measurable even if bounded.

proof : The ordinary Cantor set has vanishing Jordan inner and outer measure and is thus Jordan measurable
with measure 0. Measurability of “regular” objects like compact convex polytopes (e.g. a triangle) and spheres
can be shown using dyadic meshes (cf. appendix on dyadic-intervals) and the alternative characterization of
Jordan-measurabile sets as approximated by sequences of elementary sets (see below). For [0, 1]d ∩ Qd we
use the property that any set has the same Jordan outer measure as its closure and the same Jordan inner
measure as its interior. The closure of [0, 1]d ∩Qd is [0, 1]d with Jordan measure 1 and the interior is ∅ with
Jordan measure 0. For the fat Cantor set Cf

β we note that its Jordan inner measure vanishes (as it has empty
interior) and its Jordan outer measure can not be smaller than 1 − β/(1 − 2β) > 0. For

∪
n∈N[n, n+ 2−n] we

note that the Jordan outer measure is ∞ and the Jordan inner measure is 1, the latter being the intuitive
“length” one would have wished for. ■

1.3.0.7 Proposition

Approximating Jordan-measurable sets by elementary sets: A bounded set M ⊂ Rd is Jordan-measurable i)
iff for any ϵ > 0 there are elementary sets E∗ ⊂ M ⊂ E∗, such that m(E∗ \ E∗) < ϵ, or alternatively, ii) iff
for any ϵ > 0 there is an elementary set E such that m∗,J (E∆M ) < ϵ.
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1.3.0.8 Proposition

Discretization lemma for Jordan-measurable sets: If M ⊂ Rd is Jordan-measurable then:

m(M ) = lim
n→∞

1
nd

#
(

M ∩ 1
n
Zd

)

1.3.0.9 Remark

It is possible for the limit in the RHS of the above to exist and M not be Jordan-measurable. For instance,
take M = [0, 1] ∩ Q which gives the limit 1 or take M = π + [0, 1] ∩ Q which gives the limit 0.

1.3.0.10 Proposition

Connections between Jordan measure and Riemann integral:

i) If M ⊂ [a, b] is measurable then 1M is Riemann-integrable over [a, b] and:∫ b

a

1M (x)dx = m1(M )

where m1(·) is the Jordan measure over R1.
ii) If f : [a, b] → R+ is such that M = {(x, y) : x ∈ [a, b], 0 ≤ y ≤ f (x)} is Jordan-measurable then f is

Riemann-integrable over [a, b] and: ∫ b

a

f (x)dx = m2(M )

where m2(·) is the Jordan measure over R2.
iii) If f : [a, b] → Rd is piecewise-continuous (Note that Riemann-integrability is a weaker condition than

piecewise-continuity, cf. appendix on Riemann and Darboux integration) then M = {(x, f (x) : x ∈
[a, b]} is Jordan-measurable in Rd+1 with Jordan measure 0. Furthermore, M = {(x, y) : x ∈ [a, b], 0 ≤
y ≤ f (x)} is Jordan-measurable in Rd+1.

1.4 Lebesgue measure

We now wish to extend the Jordan measure to a larger family of sets such that pathological cases mentioned
above become measurable. This is done by implicitly extending the building blocks (thus far elementary
sets) to those that are countable (finite or countably infinite) unions of boxes.

1.4.0.1 Definition

Let M ⊂ Rd. The Lebesgue outer measure m∗ of M is defined to be:

m∗(M ) = inf∪
n

Bn⊃M

∞∑
n=1

|Bn|

where the infimum is over all countable collections of boxes (Bn)n∈N and | · | is the volume of a box (i.e
Jordan or elementary measure). It follows, by definition, that all countable sets (including ∅) have Lebesgue
outer measure zero and that m∗(M ) ≤ m∗,J (M ).
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1.4.0.2 Remarks

1) If we extend the real line with infinity then the Lebesgue outer measure is well defined for every set in
Rd.

2) Naturally, we would like to define a Lebesgue inner measure in analagy to the Jordan inner measure
as follows (we will call this object m̃∗ as we will see that it is not a particularly useful way of defining
the Lebesgue inner measure):

m̃∗(M ) = sup∪
n

Bn⊂M

∞∑
n=1

|Bn|

However, two difficulties arise. First, the corresponding bound by the Jordan inner measure is useless,
i.e m∗,J (M ) ≤ m̃∗(M ) is never strict 8. Second, this definition would not even help us define measura-
bility fruitfully. Consider the fat Cantor set to which we would like to assign measure 1

2 but for which
m̃∗ evaluates to 0.

3) Therefore, we have an inherent asymmetry here. This leads to two possible, yet equivalent, definitions
of Lebesgue-measurability. The first option (the Carathéodory method) is to build an alternative
formulation for the inner measure that works properly and proceed as usual by defining Lebesgue-
measurable sets to be those with identical outer and inner measures. Here we follow [1] which gives an
equivalent but less confusing construction, namely Littlewood’s first principle (i.e “Lebesgue-measurable
sets are almost open”) relying solely on Lebesgue outer measure.

1.4.0.3 Proposition

Properties of Lebesgue outer measure: The Lebesgue outer measure m∗(·) is non-negative, i.e m∗(M ) ≥ 0
with equality for M = ∅, monotonic, i.e M ⊂ N ⇒ m∗(M ) ≤ m∗(N ), and σ-subadditive 9.

proof : The first two properties follow from definition. We here prove σ-additivity using a useful and generic
trick (called the “ϵ of room” trick as per [1]): instead of showing the desired inequality we prove it within a
margin of error ϵ in such a way that ϵ can be brought to zero without affecting the proof. We want to show:

m∗ (∪nAn) ≤
∑

n

m∗(An)

for any countable collection {An}n∈N ⊂ P (Ω). This is, by definition:

inf
∪nBn⊃∪nAn

∑
n

|Bn| ≤
∑

n

inf
∪kBn

k
⊃An

∑
k

|Bn
k |

where the infimums are over countable collections of boxes. Now take any ϵ > 0. Applying the properties
of the infimum to all n terms on the RHS allows to claim there exists a collection {Cn

k }n,k∈N of boxes such
that for every n ∈ N we have:∑

k

|Cn
k | ≤ inf

∪kBn
k

⊃An

∑
k

|Bn
k | + ϵ/n = m∗(An) + ϵ/n

Adding over all n gives: ∑
n,k

|Cn
k | ≤

∑
n

m∗(An) + ϵ

8This has to do with the fact that finite sums of non-negatives can approach a limit, with arbitrary precision, from below and
not from above. Thus, lifting the finiteness restriction from elementary covers does not lead to more power in the inner
measure case. On a deeper level, this follows from the fact that elementary measure is subadditive, and not superadditive
[1].

9The σ− prefix generally stands instead of “countable union”, e.g. as in σ-finite, σ-compact.
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On the other hand, since
∪

n,k Cn
k ⊃

∪
n An, we have:∑

n,k

|Cn
k | ≥ inf

∪nBn⊃∪nAn

∑
n

|Bn| = m∗(∪nAn)

Thus:
m∗ (∪nAn) ≤

∑
n,k

|Cn
k | ≤

∑
n

m∗(An) + ϵ

This completes the proof since we have established the desired inequality upto an ϵ of error for any choice
of ϵ > 0. ■

1.4.0.4 Definition

Lebesgue-measurable sets (defn. by approximation): A set M ⊂ Rd is Lebesgue-measurable if for every ϵ > 0
there exists an open set U ⊂ Rd containing M such that m∗(U \M ) < ϵ 10 in which case the Lebesgue measure
of M is m(M ) = m∗(M ). Specifically, sets with outer measure zero are necessarily Lebesgue-measurable
with measure 0.

1.4.0.5 Proposition

Closure properties of Lebesgue-measurable sets: The following sets are Lebesgue-measurable in Rd: i) open
sets, ii) complement of Lebesgue-measurable sets, iii) countable union of Lebesgue-measurable sets.

1.4.0.6 Remark

From i and ii it follows that all closed sets are Lebesgue-measurable. From iii and ii it follows that countable
intersections of Lebesgue-measurable sets are Lebesgue-measurable.

1.4.0.7 Proposition

Alternative approximations for Lebesgue-measurable sets: The following approximation criteria provide equiv-
alent conditions for a set M ∈ Rd to be Lebesgue-measurable:

1. ∀ϵ ∃ open U ⊃ M : m∗(U \ M ) < ϵ.
2. ∀ϵ ∃ closed V ⊂ M : m∗(M \ V ) < ϵ.
3. ∀ϵ ∃ open U : m∗(U∆M ) < ϵ.
4. ∀ϵ ∃ closed V : m∗(M∆V ) < ϵ.

1.4.0.8 Proposition

Properties of Lebesgue measure∗: The Lebesgue measure is σ-additive (and thus σ-subadditive) and transla-
tion invariant.

10This could have equivalently been written as m∗ (U∆M ) since M ⊂ U . This brings to fore the connection between this
definition and the approximation-by-elementaries formulation of Jordan-measurables.
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1.4.1 Alternative definition of Lebesgue-measurable sets

1.4.1.1 Proposition

Lebesgue inner measure. For any bounded M ⊂ Rd let its Lebesgue inner measure be m∗(M ) = m(E) −
m∗(E \ M ) for any elementary set E ⊃ M (the claim is that the choice of E is irrelevant). Furthermore,
m∗(M ) ≤ m∗(M ) and equality holds iff M is Lebesgue-measurable.

1.4.1.2 Proposition

Carathéodory’s criterion. A set M ⊂ Rd is Lebesgue-measurable iff for any elementary set E ⊂ Rd we have
m(A) = m∗(E ∩ M ) +m∗(E \ M ).

1.5 σ-algebras and abstract measures

In this section we formalize the results of the previous section in abstract terms. In all that follows let Ω be
the universe (instead of Rd).

1.5.0.1 Definition

F ⊂ P (Ω) is an algbera 11 over Ω if F is closed under complements and unions.

1.5.0.2 Remarks

1) From this definition it follows that ∅,Ω ∈ F and that F is closed finite applications of all basic binary set
theoretic operations ∩, ∪, \,∆. Alternatively, we could have demanded that F be closed under complements
and either of ∩, ∪, \ (but being closed under complement and ∆ is not enough). 2) Examples are: P (Ω)
for any Ω and the set of elementary, Jordan-measurable, or Lebesgue-measurable sets in Rd. 3) As usual a
subalgebra of F is a subset of F which satisfies the axioms on its own, i.e is closed under complements and
unions.

1.5.0.3 Definition

F ⊂ P (Ω) is a σ-algbera 12 over Ω if it is closed under complements and countable unions. The pair (Ω, F )
is a measurable space.

1.5.0.4 Remarks

1) From this definition it follows that F is also an algebra over Ω and that it is closed under countable
intersections. Equivalently, we could have demanded that F be closed under complements and countable
intersections. 2) For any Ω, P (Ω) is a σ-algbera. Over Rd, the set of Lebesgue-measurable sets is a σ-algebra.
But the set of elementary sets and the set of Jordan-measurable sets are not σ-algebras over Rd. 3) As usual
11Alternatively, a boolean algebra, or a field.
12Alternatively, a σ-field.
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a sub-σ-algebra (or subalgebra when the context is clear) of F is a subset of F which satisfies the axioms on
its own, i.e is closed under complements and countable unions. In the section on stochastic processes we will
see that sub-σ-algebras can be regarded as “experiments” whose possible outcomes are “events” (the sets in
the subalgebra) and in this sense represent “partial information”.

1.5.0.5 Definition

Let F ⊂ P (X) be an arbitrary collection of subsets. The σ-field generated by F is defined to be:

σ(F ) =
∩

F⊂Σ
Σ

where the intersection is over σ-algebras Σ over Ω. That any arbitrary intersection of σ-algebras is necessarily
a σ-algebra is true but nontrivial (in fact, this is clearly not true for arbitrary unions of σ-algebras).

1.5.0.6 Definition

Let F be an algebra over Ω. A function m : P (Ω) → [0, ∞] is a content if it is finitely additive and m(∅) = 0.

1.5.0.7 Remark

In Rd the elementary “measure” is a content over the algebra of elemtnary sets, and the Jordan “measure” is
a content over the algebra of Jordan-measurable sets. Note that both these contents are merely restrictions
of the Lebesgue measure to the corresponding σ-algebras.

1.5.0.8 Definition

Let F be a σ-algebra over Ω. A function m∗ : P (Ω) → [0, ∞] is an outer measure if m(∅) = 0, and m is
σ-subadditive and monotone, i.e A ⊂ B ⇒ m∗(A) ≤ m∗(B).

1.5.0.9 Remarks

1) As shown earlier, in Rd, both the Lebesgue and Jordan outer measures are outer measures. 2) An
important intuition to have in mind about outer measures is that they are easy to make. This is ultimately
because demonstrating σ-subadditivity is much easier than demonstrating σ-additivity. For instance, the
counting measure (i.e the measure of A is |A| ∈ N if A is finite and ∞ otherwise) is an outer measure over
Rd. Or in the definition of the Lebesgue outer measure, we could have as well used open or closed balls,
half-spaces, or compact convex polytopes, instead of boxes and the proof of σ-subadditivity would have
remained untouched. 3) In our study of Lebesgue measure in Rd we followed the more geometric route and
mentioned Carathéodory’s method of defining the Lebesgue measure as a less intuitive alternative. In the
abstract setting, things are more or less reversed thanks to the power of the Carathéodory extension theorem
(see below).

1.5.0.10 Definition

Let F be an algebra over Ω. A function m0 : P (Ω) → [0, ∞] is a pre-measure if m0(∅) = 0, and m0 is
σ-additive, i.e whenever

∪
n∈NAn ∈ F for disjoint An, we have m0(

∪
An) =

∑
n m0(An).
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1.5.0.11 Remarks

1) What makes m0 a pre-measure and not a measure is not its additivity properties (it is required to be
σ-additive which is as strong as it gets) but the domain on which it is defined. If the domain is not a
σ-algebra and merely an algebra, then m0 is not a measure, but, as we shall see, a bona fide measure. 2) A
simple example is this: in Rd the elementary measure is a pre-measure on the elementary algebra (not by
definition, since one has to prove σ-additivity and take care of coelementary sets).

1.5.0.12 Definition

Let (Ω, F ) be a measurable space. A function m : F → [0, ∞] is a measure over (Ω, F ) if it is σ-additive
and m(∅) = 0. For any such measure, (Ω, F , m) is a measure space. Exmaple: (Rd, L , m) is a measure space
where m(·) is the Lebesgue measure and L is the σ-algebra of Lebesgue-measurable sets in Rd.

1.5.0.13 Definition

Let (Ω, F , m) be a measure space. We say that m is finite if m(Ω) < ∞. We say that m is σ-finite if Ω can
be covered by a countable union of sets with finite measure.

1.5.0.14 Remarks

1) A special case of a finite measure is when m(Ω) = 1 in which case m is a probability measure and
(Ω, F , m) is a probability space. Naturally, any finite measure gives a probability measure after proper
scaling. 2) Example: the counting measure is σ-finite over N (with the power set σ-algebra) but not σ-finite
over R. The Lebesgue measure, however, is σ-finite over R since R =

∪
n[−n, n]. 3) Although finiteness is a

property of the measure only, σ-finiteness is a joint property of the measure and the σ-algebra. For instance,
if we were to pick F such that Ω could not be covered by any countable collection of F -sets then no measure
could be σ-finite over F .

1.5.0.15 Proposition

Identification of measures over generator algebras∗ (cf. [2]): Let A be an arbitrary algebra over Ω and
m1 and m2 be two σ-finite measures over σ(A ). If m1 and m2 agree everywhere in A then they agree
everywhere in σ(F ), i.e they are the same measures.

1.5.0.16 Remark

1) This is not true if we remove the σ-finiteness requirement. For instance, the set of open half-lines
A = {(x, ∞) : x ∈ R} generates the Borel σ-algebra B(R) (see section on complete measures). The
Lebesgue measure and the counting measure agree everywhere on A but they are not identical over B(R).
2) The requirement that A be an algebra is two strong. In fact, it is enough to demand that A be a
π-system, i.e that it is only closed under finite intersections. 3) As a corollary, we can easily show that if
m1 and m2 are finite ( e.g. probability measures) and they agree on a π-system A , and Ω can be covered
by a countable union of A -sets, then the agreement of m1 and m2 on A implies their agreement on σ(A ).
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1.5.0.17 Proposition

Carathéodory extension theorem∗: Let m∗ be an outer measure over Ω. Define a set X ⊂ Ω to be
Carathéodory-measurable with respect to m∗ if for every A ⊂ Ω we have:

m∗(A) = m∗(A ∩ X) +m∗(A \ X)

Then the set F of Carathéodory-measurable subsets is a σ-algebra and m : F → [0, ∞] the restriction of
m∗ to F is a measure.

1.5.0.18 Proposition

Hahn-Kolmogorov theorem∗: Let m0 : B0 → [0, ∞] be a pre-measure over an algebra F0. There exists a
measure m : σ(F0) → [0, ∞] which agrees with m0 on F0.

1.5.0.19 Remark

The Carathéodory extension theorem formalizes the construction of the Lebesgue measure from the Lebesgue
outer measure. Similarly, the Hahn-Kolmogorov theorem formalizes the construction of the Lebesgue measure
from the elementary measure.

1.5.1 Excursion: equivalence with respect to algebras

The notion of equivalence with respect to an algebra has no analogue in our concrete developments for Rd.
Nevertheless, we mention it here since it has a deep connection to conditional probabilities. The core idea is
similiar to that of the coarseness of a topology.

1.5.1.1 Definition

Let F be an arbitrary algebra over Ω. We say that F does not distinguish between x, y ∈ Ω, or x, y are
F -equivalent if for every A ∈ F both x and y lie either in A or Ac, i.e 1A(x) = 1A(y). This is an equivalence
relation and thus imposes a partition on Ω.

1.5.1.2 Proposition

Properties of algebra-equivalence: Let F be an arbitrary algebra over Ω. i) Any C ⊂ Ω is an equivalence
class with respect to F iff C ∈ F and F contains no proper subset of C. ii) Any two elements x, y ∈ Ω are
F -equivalent iff they are σ(F )-equivalent, i.e the partitions induced by F and σ(F ) are identical.

1.6 Complete measure spaces

In this section we introduce the Borel σ-algebra and its corresponding measure, and note their relation to
the Lebesgue measure.

12



1.6.0.1 Definition

Let (X, T ) be a topological space (e.g. Rd with the natural Euclidean topology). The Borel σ-algebra B(X)
of X is defined to be σ(T ), i.e the σ-algebra generated by the open subsets of X. Elements of B(X) are
called Borel-measurable.

1.6.0.2 Remark

We can easily show that all the following subsets of Rd equivalently generate B(Rd): i) open subsets, ii)
closed subsets, iii) compact subsets, iv) open balls, v) boxes, vi) elementary sets.

1.6.0.3 Definition

A measure space (Ω, F , m) is complete if every subset of every null set is measurable.

1.6.0.4 Proposition

Incompleteness of the Borel measure space∗: The measure space (Rd, B(Rd), m) is not complete.

proof : Here is the gist of the proof which needs some theory of cardinals to make concrete. Consider the
middle thirds Cantor set C. We know that it is isomorphic to R and thus the cardinality of its power set
is 2|R|. On the other hand, one can show (using transfinite induction) that the cardinality of the Borel
σ-algebra is identical to |R|. It follows that the Cantor set (which is a Jordan and Lebesgue null set) must
have nonmeasurable subsets.

1.6.0.5 Remarks

1) There is a natural way to complete an incomplete measure space by including all subsets of its null sets
in the σ-algebra and assigning a measure 0 to them. In this sense the Lebesgue measure space over Rd is the
completion of the Borel measure space. 2) Incompleteness of the Borel measure space does not depend on
the full axiom of choice (it can be proved using only the axiom of countable choice). However, it is difficult,
but possible, to demonstrate specific examples of non-Borel sets in Rd that are subsets of null sets [1].

1.7 Lebesgue Integration

The goal of Lebesgue integration is to resolve the very first issue raised at the beginning of this chapter: if f

and g agree everywhere except in a null set then we expect their integrability and the value of their integrals to
coincide. The central idea can be visualized in the simplest case where f : R→ R. Instead of approximating
the area under f with finer and finer vertical columns (as we do in Riemann integration), we approximate the
area with finer and finer horizontal slabs. The increased “power” of Lebesgue integration, however, does not
come from choice of vertical vs horizontal slabs (one could define the Riemann integral with horizontal slabs as
well), but on that these slabs need not be erected on intervals but on arbitrary measurable sets. Accordingly,
another group of functions, namely simple functions, take center in Lebesgue integration corresponding to
piecewise constant functions in Riemann integration. Then, as with the Darboux formulation of Riemann
integration (cf. appendix on Riemann and Darboux integration), we define the Lebesgue integral first on
simple functions and generalize to an appropriately class of Lebesgue integrable functions.

13



1.7.0.1 Definition

A non-negative function f : Rd → [0, ∞] is simple if it is a finite linear combination of indicator functions:

f = α11A1 + α21A2 + . . . + 1An

where the Ak are Lebesgue-measurable and the αk are non-negative. Note that simple functions take only
a finite number of values (the converse is not true).

1.7.1

Before we proceed with technicalities, we first address the subtle differences between Riemann and Lebesgue
integration:

1.7.1.1 Remarks

1) Recall that the Riemann integral is first defined over bounded domains and improper integrals are defined
as limits of proper integrals over arbitrarily large bounded domains. Lebesgue integration is defined over
arbitrary measurable sets of (Ω, F ) and Ω (or any other unbounded measurable domain of integration) is
just another set. 2) It is customary for the Riemann integral in a single variable to be interpreted with a
sense of direction, that is

∫ b
a fdx = −

∫ a
b fdx. This sense is lost in multiple variables (e.g. consider

∫
Ω

fdx

where Ω is the unit circle in R2). In Lebesgue integration this asymmetry is removed, again because integrals
are defined primarily over sets and not on intervals. The appropriate notation for the Lebesgue integral over
an interval [a, b] would then be

∫
[a,b] fdx. 3) Riemann-integrability is defined with reference to the equality

of the upper and lower approximations. Although a similar result is true for Lebesgue integration it is
more common to demand, by way of definition, a property called “measurability” from the function before
considering its Lebesgue-integrability.

1.7.1.2 Definition

Let (Ω, F , µ) be a measure space and let (S, Σ) be a measurable space. A function f : Ω → S is (F , Σ)-
measurable (or simply measurable if the context is clear) if for every A ∈ Σ we have f−1(A) ∈ F .

1.7.1.3 Remarks

1) This is exactly the definition of continuous functions over topological spaces (just replace measurable
sets with open sets). The ease of manipulating preimages (e.g. under set theoretic operations) is the main
reason we like such formulations of structural properties. 2) The above definition has many equivalents for
the special case of the Lebesgue measure space over Rd which are documented below. 3) When S = Rd it is
typically assumed that the target is the Borel measure space. That is, f : Rd → R is Lebesgue-measurable
if it is (L (Rd), B(R))-measurable. Similarly, it is Borel-measurable if it is (B(Rd), B(R))-measurable. Fur-
thermore, for most practical purposes (as we will see in stochastic processes), Borel-measurable functions are
more desirable than Lebesgue-measurable functions. There are a few reasons for this preference for the Borel
σ-algebra on either the domain or the target measure space: i) (L , L )-measurable functions are not even
necessarily continuous (e.g. Cantor’s staircase function). ii) Composition of Borel-measurable functions is
always Borel-measurable. The same is not true for Lebesgue-measurable functions (proof : draw a picture).
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iii) The Lebesgue measure space is only defined for Ω = Rd but the Borel measure space is defined for
arbitrary topological spaces. Furthermore, since B(X) is, by definition, the smallest σ-algebra containing
all open sets of X, B(X) plays nicely with the topology of X.

1.7.1.4 Proposition

Let (Ω, F , µ) be a measurable space and (S, Σ) be a measure space with A ⊂ Σ such that σ(A ) = Σ. A
function f : Ω→ S is measurable iff f−1(A) ∈ F for every A ∈ A . In words: it always suffices to check the
measurability condition only on a generating set of the destination σ-algebra.

1.7.1.5 Prosposition

Alternative definitions of Lebesgue-measurable functions in Rd: Let f : Rd → [0, ∞]. The following are
equivalent to f being Lebesgue-measurable:

1. f is the pointwise limit of a sequence of simple functions.
2. f is the pointwise almost everywhere limit of a sequence of simple functions.
3. The preimage, under f , of open/closed half-lines are Lebesgue-measurable in Rd.
4. The preimage, under f , of open/closed intervals are Lebesgue-measurable in Rd.

1.7.1.6 Proposition

We can consistently define the Lebesgue integral of a non-negative simple function f =
∑

k αk1Ak
to be:∫

Rd

fdx =
∑

k

αkm(Ak)

where m(·) is the Lebesgue measure. The claim here is that if a simple function has two representations as
linear combinations of indicators, the corresponding RHS sums are identical.

1.7.1.7 Definition

Let f : Rd → [0, ∞]. Its lower Lebesgue integral is:∫
Rd

fdx = sup
0≤g≤f

∫
Rd

gdx

If f is additionally Lebesgue-measurable, then the above is also defined to be its Lebesgue integral:∫
Rd

fdx = sup
0≤g≤f

∫
Rd

gdx

1.7.1.8 Remarks

1) Our formulation does not distinguish between Lebesgue-measurablity and Lebesgue-integrability of a
function. Some authors distinguish the two by demanding that the lower Lebesgue integral be finite for a
function to be called Lebesgue-integrable functions, e.g. they would not say f = 1/x is Lebesgue-integrable
with integral ∞. 2) One coulde define an upper Lebesgue integral by:∫

Rd

fdx = inf
g≥f

∫
Rd

gdx
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where the infimum is over non-negative simple functions. This is not a useful construction because unless
f is bounded it may not be bounded above by simple functions. However, if f is Lebesgue-measurable and
is bounded then the upper and lower Lebesgue integrals will coincide. 3) Thus far we have only considered
non-negative functions. However, note that for any real function f we can write f = f+ − f− where f+ and
f− are both non-negative 13 and then we define:∫

Rd

fdx =

∫
Rd

f+dx −
∫
Rd

f−dx

demanding that at least on of the integrals on the RHS be finite.

1.7.2 Some important results

In all the following we consider an arbitrary measure space (Ω, F , µ) and focus on non-negative real functions
f : Ω→ R, i.e by measurable we mean (F , B(R))-measurable.

1.7.2.1 Proposition

Fatou’s lemma: Let (fn)n∈N be a sequence of non-negative measurable functions. We have:

lim inf
n→∞

∫
Ω

fndµ ≥
∫
Ω

lim inf
n→∞

fndµ

1.7.2.2 Proposition

Monotone convergence theorem: Let (fn)n∈N be a pointwise non-decreasing sequence of non-negative mea-
surable functions. We have:

lim
n→∞

∫
Ω

fndµ =

∫
Ω

lim
n→∞

fndµ

1.7.2.3 Proposition

Borel-Cantelli Lemma: Let (An)n∈N be a sequence of F -measurable sets. We have:∑
n

µ(An) < ∞ ⇒ µ(lim sup
n

An) = 0

In words (for background, cf. appendix on Algebras and sequences of sets): if the An have a finite sum of
measures then almost every ω ∈ Ω appears in at most finitely many of the An.

proof : By defininition, we have:
lim sup

n
An =

∩
n∈N

∪
k≥n

Ak ⊂
∪

k≥n

Ak

By subadditivity of µ we have the following for every n ∈ N:

µ(lim sup
n

An) ≤
∞∑

k=n

µ(Ak)

but the RHS tends to zero, by assumption, as n → ∞. Since the inequality holds for any n the proof is
complete. ■
13this move is not allowed in Riemann integration since it potentially splits the domain of f+ and f− into “countably-intricate”

sets for instance take f (x) = 2 × 1Q − 1
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1.7.2.4 Proposition

1. Markov’s inequality: for any 0 ≤ λ ≤ ∞ we have:

µ
(
f−1 ([λ, ∞

))
≤ 1

λ

∫
Ω

fdµ

2. Chebyshev’s inequality: for any 0 ≤ λ ≤ ∞ and 0 ≤ p ≤ ∞ we have:

µ
(
f−1([λ, ∞)

)
≤ 1

λp

∫
Ω

|f |pdµ =

(
∥f∥p

λ

)p

3. Jensen’s inequality: if µ is finite, i.e µ(Ω) < ∞ and ϕ : R→ R is convex then:

ϕ

(∫
Ω

fdµ

)
≤
∫
Ω

ϕ ◦ fdµ

2 Appendix

In this section we review some objects and operations that serve mostly as building blocks or (counter)
examples in previous sections. Elementary results in real analysis and point set topology are assumed.

2.1 Dyadic Intervals

2.1.0.1 Definition

The dyadic interval Dn
i is defined to be

[
i

2n , i+1
2n

)
for any i, n ∈ N with i ≤ 2n. A dyadic cube in Rd is any

set of the form

Dn
i1 × Dn

i2 . . . × Dn
ik
=

[
i1
2n

,
i1 + 1

2n

)
×
[

i2
2n

,
i2 + 1

2n

)
. . . ×

[
id

2n
,

id + 1
2n

)
for some d integers i1, i2, . . . , id in {1, . . . , 2n}.

2.1.0.2 Proposition

Properties of dyadic intervals: i) For any n ∈ N there are a total of 2n dyadic sets Dn
i each of length 2−n.

These 2n sets are disjoint and provide a partition of [0, 1). ii) (nesting property) For any n ∈ N any dyadic
interval Dn+1

j is either contained within Dn
i or lies entirely outside it. It follows that any two dyadic intervals

Dn
i and Dm

j are either disjoint or contained in one another.

2.1.0.3 Definition

The dyadic expansion functions dn : [0, 1) → {0, 1} assign to any real ω ∈ [0, 1) the n-th digit of its binary
representation; that is, if [ω]2 = 0.ω1ω2 . . . then dn(ω) = ωn.

2.1.0.4 Proposition

Properties of dyadic expansions: For any ω ∈ [0, 1) and any n ∈ N there exists a unique dyadic interval Dn
i

that contains ω and we always have dn(ω) ≡ i mod 2.
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2.2 Cantor sets

We consider two families of Cantor sets:

2.2.0.1 Definition

Fix some 0 < α < 1 and let A1 = [0, 1]. For each n ∈ N, let An+1 ⊂ An be the collection of intervals obtained
by excluding from every interval in An, say with length ℓ, its centered subinterval of length αℓ. We define
“A∞” to be Cα, the Cantor set corresponding to α. The parameter α is assumed to be 1

3 when not specified
in which case the Cantor set is known as the middle thirds Cantor set.

2.2.0.2 Definition

Fix some 0 < β < 1 and let B1 = [0, 1]. For each n ∈ N, let Bn+1 ⊂ Bn be the collection of intervals obtained
by excluding from every interval in Bn, say with length ℓ, its centered subinterval of length βnℓ. We define
“B∞” to be Cf

β , the fat Cantor set corresponding to β. The parameter β is assumed to be 1
4 when not

specified in which case the fat Cantor set is known as the Smith-Volterra-Cantor set.

2.2.0.3 Remarks

1) The quotes around “A∞” and “B∞” have to do with the fact that it is not immediately obvious that
the construction leads to a nonempty set. This is established by Cantor’s intersection theorem (see below).
Furthermore, the limiting sets can be written explicitly as countably infinite intersections

∩
n An and

∩
n Bn

which are preferable to getting involved in limits of sequences of sets.

2) The reason we need β < 1
2 in the construction of fat Cantor sets is to ensure the subinterval to be removed

is not larger than its containing interval, i.e β2 < 1 − 2β.

3) Typically we are concerned with values of α and β that are of the form 1/n for some n ∈ N. The results
below are true for any choice but proofs are easier and more intuititve for rational values. Specifically, if one
considers irrational α, β one is lead to the representation of numbers in [0, 1] in an irrational base which has
some nonintuitive (and for our purposes irrelevant) properties.

4) For any n ∈ N, the sets An and Bn are composed of exactly 2n disjoint intervals. This leads to the
intuition that every point in a Cantor (or fat Cantor) set corresponds to a sequence of binary digits. This
establishes isomorphism of any Cantor set with R and provides a connection to dyadic intervals and infinite
binary trees.

2.2.0.4 Proposition

Cantor’s Intersection Theorem: Any decreasing nested sequence of compact subsets of a compact space has
nonempty intersection.

proof : Denote the decreasing sequence by (Cn) and the ambient space by X. Define the increasing sequence
of open sets (C′

n) by C′
n = X \ Cn. If the intersection

∩
n Cn is empty then

∪
n C′

n = X \
∩

n Cn = X, which
by compactness of X, implies that there must be a finite subset of {C ′

n} that covers X. If C′
k is the largest

of the sets in the finite cover, we must have X = C ′
k and thus Ck = ∅ which is a contradiction. ■
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2.2.0.5 Proposition

Topological Properties of Cantor Sets: A Cantor set of either kind is (i) compact, (ii) totally disconnected,
(iii) nowhere dense in [0, 1], and (iv) homeomorphic to any other Cantor set.

proof : Any Cantor set is an intersection of closed sets and is thus closed. Being a closed subset of a complete
metric space it is also complete. Total boundedness is obvious, and thus the Hein-Borel theorem implies
that any Cantor set is compact. Furthermore, having empty interior, any Cantor set has a closure (which is
itself) with empty interior which means, by definition, that it is nowhere dense. Homeomorphism of arbitrary
Cantor sets can be established by showing that they are all homeomorphic to some other set X. This can
be established easily for X =

∏
n∈N{0, 1} with the discrete topology (see the proof of next proposition). ■

2.2.0.6 Proposition

Measure of Cantor Sets: Let Cα be a Cantor set and Cf
β a fat Cantor set. Both Cα and Cf

β are isomorphic
to [0, 1] and are thus uncountable. Furthermore, Cα has measure 0 and Cβ has measure 1 − β/(1 − 2β).

proof : We show isomorphism of Cα with [0, 1); the exact same argument applies to Cf
β . The standard proof

is to build an injection from Cα to [0, 1) and using the obvious inclusion injection from [0, 1) to Cα invoke
the Schröder–Bernstein theorem. Note that any x ∈ Cα must lie in all of the intermediate sets An. Further,
each An is a finite collection of disjoint intervals. Therefore, we can assign to every x ∈ Cα a binary sequence
(ωn)n∈N with the rule that ωn is the counting position of the interval in An that contains x modulo 2. Since
the set of binary sequences is isomorphic to [0, 1) we have an injection from Cα to [0, 1) and the proof of
isomorphism to [0, 1) is complete. The lengths of the sets follow from routine calculations: For standard
Cantor sets note that for all n ∈ N, the set An has length (1 − α)n−1 which converges to 0 as n → ∞. For
fat Cantor sets note that for all n ∈ N, the set Bn \ Bn+1 has length 2nβn−1 and thus B1 \ B∞ has length∑

n 2nβn−1 = β/(1 − 2β). ■

2.2.0.7 Remarks

1) Here we are using the term “measure” loosely (but correctly). The only informal part of our usage is
that we are assuming that there is a way to assign lengths to subsets of the real line such that the length
of a countable union of disjoint sets is precisely the sum of their lengths (which is true in this case, but not
obvious).

2) The last two propositions capture deep concepts embodied by Cantor sets: a Cantor set of either kind
provides an example for a set which is compact despite being nowhere dense and totally disconnected. A
fat Cantor set additionally provides an example for a set which has positive measure despite being nowhere
dense (i.e containing no intervals).

3) The Cα → [0, 1) injection provided above can be stated somewhat differently: let α = 1/(2k + 1) for some
natural k ∈ N. Then at each step of construction of Cα the set An is precisely the set of [0, 1) numbers for
which the n-th digit of the base 2k + 1 representation is anything but k. It follows that Cα is the set of [0, 1)
reals whose base 2k + 1 representation does not contain k. We can then shift down all digits larger than k

to get the representation of another number in base 2k and this correspondance is injective. For instance,
the middle thirds Cantor set consists of all points in [0, 1) whose ternary representation consists entirely
of 0’s and 2’s. Swapping 2’s for 1’s gives an injection from the ternary reprsentation of C 1

3
to the binary

representation of [0, 1).
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2.3 Riemann and Darboux integration

These are two equivalent forms of integration that we refer to in building stochastic integrals.

2.3.0.1 Definition

For any f : [a, b] → R, the upper Riemann integral of f is∫ b

a

fdx = lim
|P |→0

∑
k

sup
τ∈[tk,tk+1]

f (τ )(tk+1 − tk)

and the lower Riemann integral of f is:∫ b

a

fdx = lim
|P |→0

∑
k

inf
τ∈[tk,tk+1]

f (τ )(tk+1 − tk)

where the limit is over partitions P : a = t1 < t2 < . . . < tn = b with mesh size |P | = maxk (tk+1 − tk). We
say that f is Riemann-integrable if the two integrals coincide.

2.3.0.2 Definition

Let f : [a, b] → R. If f is piecewise constant, namely f (τ ) = fk for all τ ∈ [tk, tk+1], then define:∫ b

a

fdx =
∑

k

fk (tk+1 − tk)

For arbitrary f define the upper Darboux integral of f to be:∫ b

a

fdx = sup
g≥fg piecewise const.

∫ b

a

gdx

and the lower Darboux integral of f is:∫ b

a

fdx = sup
g≤fg piecewise const.

∫ b

a

gdx

We say that f is Darboux-integrable if the two integrals coincide.

2.3.0.3 Proposition

Equivalence of Darboux and Riemann integration: Any real function is Riemann-integrable iff it is Darboux-
integrable in which case the two integrals coincide in value.

2.3.0.4 Proposition

Lebesgue’s Riemann-integrability criterion: Any real function is Riemann-integrable iff it is continuous almost
everywhere.

20



2.3.0.5 Remarks

1) Note that this has nothing to do with Lebesgue integration and does not need the full machinery of
measure theory. Negiligible sets can be defined without invoking measure theory (cf. Negligible sets). 2)
This theorem establishes the following surprising results: the indicator function of the Cantor set is Riemann-
integrable but that of the fat Cantor set is not. This is because 1C is discontinuous exactly at every point of
C (since C is nowhere dense) but C is negligible. On the other hand 1Cf , being also discontinuous exactly
at every point of Cf , has a non-negligible set of discontinuities and is thus not Riemann-integrable.

2.4 Total Variation and Riemann-Stieltjes integration

Riemann-Stieltjes integration serves as an intuitive bridge between Riemann and Lebesgue integration. Fur-
thermore, the notion of total variation used to prove the existence of the former integral is also central in
the study of continuous time stochastic processes.

2.4.0.1 Definition

Let f : R→ R be an arbitrary function. The total variation of f over an interval [a, b] is defined to be:

V (f ) = sup
P

∑
k

|f (tk+1) − f (tk)|

where the supremum is over all partitions P of [a, b]: a = t1 < t2 < . . . < tn = b. We say that f has bounded
variation if V (f ) < ∞.

2.4.0.2 Proposition

Properties of bounded variation functions: i) If f has bounded variation, it is not necessarily continuous,
e.g. take staircase functions. ii) If f is C-Lipschitz then V (f ) ≤ C (b − a), i.e it has bounded variation. The
converse is not true (by i). iii) If f is monotone over [a, b] then its total variation is |f (a) − f (b)|. iv) If f

has bounded variation, it can be written as the difference of two monotone functions.

2.4.0.3 Proposition

Riemann-Stieltjes Integral: Let f be continuous and g have bounded variation over [a, b]. The integral of f

with respect to g exists, i.e approximating sums converge as the partition mesh size tends to zero:∫ b

a

fdg = lim
|P |→0

∑
k

f (τk) [g(tk+1 − g(tk)]

where the mesh size of P is |P | = maxk (tk+1 − tk) and the choice of τk ∈ [tk, tk+1] is arbitrary.

proof : The simpler case of montone g can be established routinely by constructing lower and upper Darboux
sums. For the arbitrary bounded variation g use iv of the previous proposition to write the integral as the
difference of two integrals with respect to monotone g. ■
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2.5 Algebraic structures

The following is a list of algebraic structures of which only their definition and elementary properties are of
interest.

2.5.1 Group-like structures

The main objects are semigroups, monoids and groups which have increasingly more structure. All of the
below structures have commutative (or abelian) variants which simply demand that the group operator be
commutative.

A semigroup is a pair (G, ·) such that G is closed under · and · is associative, i.e x · (y · z) = (x · y) · z. An
example is (N,+). A monoid is a semigroup with an identity element 1 satisfying 1 · x = x · 1 = x. An
example is the set of n × n matrices with usual matrix multiplication or the set of character strings with
concatenation. It can be shown that identity elements are necessarily unique and that inverse elements, i.e
x−1 such that x · x−1 = x−1 · x = 1, are unique if they exist. A group is a monoid with guaranteed inverses
everywhere. An example is (Z,+).

2.5.1.1 Ring-like structures

A semiring is a triplet (R,+, ·) such that (R,+) and (R, ·) are both semigroups 14 and · distributes from
left and right over +. An example is (P (X), ∪, ∩) with ∅ as 0 and Ω as 1, see below. A ring is a semiring
such that (R,+) guarantees inverses, i.e it is a commutative group. A commutative ring is a ring such that
(R, ·) too is a commutative monoid. A division ring is a ring which guarantees inverses under both + and
· (excluding multiplicative inverse for 0), i.e both (R,+) and (R, ·) are commutative groups. An example is
the set of invertible n × n matrices and the zero matrix together with matrix composisition and addition.
Commutative division rings are fields, e.g. Q, R, or C.

2.6 Algebras and sequences of sets

2.6.1 Algebras of Sets

Much of measure theory is concerned with containing pathological cases where elementary set operations
are applied infinitely many times (and as we saw drawing the line between countably many and uncountably
many operations leads to desirable behavior while coverying most objects of interest). Here we present the
simples algebraic structures over sets which are contained with only finite applications of set operations
which is the point of contact to boolean logic. This connection is intuitively captured by the correspondance
between ∩, ∪ of set theory and ∧, ∨ of logic in various formulae.

14Some authors use a much stronger definition for semirings which is no longer analogous to semigroups: (R,+) is a commutative
monoid with identity 0, and (R, ·) is a monoid with identity 1, i.e identity elements and commutativity of + are added to
the axioms. In addition, this definition requires that 0 · x = x · 0 = 0 which can be proved for rings but is required as axiom
for this stronger definition of semirings. In the terminology we use, an additive semiring restores commutativity of +, a
rig (“ring without negative element”) restores the latter and the existence of 0, and a rig with unity restores additionally
the existence of 1. The latter would be equivalent to the stronger definition of a semiring. In either case, a commutative
semiring would be one whose multiplication commutes.
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2.6.1.1 Definition

Let Ω be any nonempty set and take any S ⊂ P (x) satisfying ∅ ∈ S. Then (S, ∪, ∩) is a commutative rig
of subsets (not a typo, cf. footnote) over Ω, i.e commutative and additive semigroup with a 0 or equivalently
a ring without a negative element, if S is closed under union and intersection. Additionally, (S,∆, ∩)
is a commutative ring of subsets if S is closed under union and symmetric set-theoretic difference ∆, i.e
x∆y = (x \ y) ∪ (y \ x).

2.6.1.2 Remarks

1) Note the ∩ and ∪ in the defintion of ring of subsets: S is required to be closed under ∆ and ∪ for (S,∆, ∩)
to be a ring of subsets. Further, note that the additive inverse of any element x ∈ S is itself since x∆x = ∅.
2) Rigs of subsets admit neither additive inverses (i.e −x such that x ∪ −x = ∅) nor multiplicative inverses
(i.e x−1 such that x ∩ x−1 = Ω). However, the set complement operation is an inverse-like alternative which
can endow them with more structure. These include: De Morgan laws, i.e (x ∩ y)c = xc ∪ yc and vice versa,
inversion of partial order, i.e x ⊂ y ⇒ yc ⊂ xc, and double inverse, i.e (xc)c = x. 3) There are additional
set-theoretic properties that can impose further structure than those summarized in the ring-like structure.
These include idempotence, i.e x + x = x · x = x, domination, i.e x + 1 = 1 and x · 0 = 0, and absorption, i.e
x · (x + y) = x + (x · y) = x 15. These properties in addition to those of the complement (see above) are the
link between ring-like structures of subsets and ring-like Boolean structures of logic where ∩ corresponds
to ∧ (meet) and ∪ corresponds to ∨ (join). This correspondence is characterized by Stone’s representation
theorem. 4) There is a related but not identical notion of semi-ring of sets in measure theory which does
not coincide with the algebraic semiring definition (of either kind, cf. footnote above). We have used neither
those objects nor these defined here.

2.6.2 Sequences of Sets

In analogy to corresponding notions in analysis, and in light of the partial order imposed by ⊂, we define
corresponding concepts for limit sets of sequences of sets.

2.6.2.1 Definition

Let (An)n∈N be a sequence of sets in Ω. Define Bn =
∪

k≥n Ak, i.e the supremum of the n-tail, and
Cn =

∩
k≥n Ak, i.e the infimum of the n-tail. The limit superior and limit inferior of (An) are defined as:

lim sup
n

An =
∩
n

Bn =
∩
n

∪
k≥n

Ak

lim inf
n

An =
∪
n

Cn =
∪
n

∩
k≥n

Ak

and if the two sets coincide limn An is well defined.

2.6.2.2 Proposition

Properties of lim inf and lim sup for sequences of sets:
15Using set-theoretic operations these read: x ∪ x = x ∩ x = x, x ∪ Ω = Ω, x ∩ ∅ = ∅, and x ∩ (x ∪ y) = x ∪ (x ∩ y) = x.
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i) Bn ↓ lim supn An and Cn ↑ lim infn An.
ii) lim infn An ⊂ lim supn An.
iii) ω ∈ lim supn An iff ω ∈ An for infinitely many n.
iv) ω ∈ lim infn An iff ω ∈ An for all but finitely many n.
v) if An ∈ F for all n and some σ-algebra F then lim supn An ∈ F and lim infn An ∈ F .
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