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Abstract

One of the universal properties of biological networks appears to be their scale-free

connecetivity structure. Such a structure is identified by a power-law like distribution

of degrees and can be found in gene regulatory, metabolic, and protein interaction net-

works. Recently, a computational model of optimization in biological networks has been

proposed that draws analagies with the 0/1 knapsack problem. This report which is based

on this computational model has two goals. First, we address some limitations of the

model and propose modifications to resolve them. Second, we address the question of

whether the power-law connectivity structure of biological networks, when considered as

optimized subgraphs in a network of all possible genes/proteins/metabolites, can arise

as a consequence of evolution under natural selection. To this end, we propose a simple

evolutionary algorithm and qualitatively analyze the degree distribution of optimized net-

works that arise from a random (Erdős–Rényi) network. We will see that the evolutionary

algorithm preserves the qualitative structure of degree distribution in the underlying net-

work. Therefore, a scale-free connectivity structure in an optimal subgraph does not

arise from evolution on random graphs and can presumably only arise from a network

having the same scale-free property.
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1 Background

Biological networks including gene regulatory networks, protein and metabolite interaction

networks have been observed to share certain structural/topological features that appear

universal [12, 10, 1, 5]. Being scale-free is one such property which is also found in a

variety of other complex networks such as neural, ecological, and social networks. A scale-

free network is one that follows a power law degree distribution, that is, the probability

of a node having degree k varies in proportion to k−γ for some γ > 0. The universal-

ity of such structural features across such a large range, from molecules to ecosystems to

man-made networks, demands a universal explanation based on generic principles. One

successful attempt is the growing network model of Barabási and Albert [3, 1, 2] which

explains the scale-free structure in terms of a preferential attacahment condition on the

growing network. According to this condition, more highly connected nodes in a network

are more likely to acquire new links. This condition is justifiable, and intuitively obvious,

for artificial networks like the Internet backbone, friendship and citation networks, and lin-

guistsic networks. For biological networks, however, the mechanistic explanation for such

preferential attachment, although supported by empirical evidence [4], remains unclear.

A novel line of thought regarding the structural evolution of biological networks has been re-

cently proposed in which the fitness landscape is modeled as a two dimensional cost/benefit

optimization problem analagous to the 0/1 knapsack: the process of evolution by natural

selection is modeled as an optimization process that seeks to maximize the total benefit

obtained by advantageous interactions in the network while maintaining an upper bound

on the total damage incurred by disadvantageous interactions [9].

In this report, we first review and propose modifications to the model of [9]. Then, we use

an evolutionary algorithm to examine how the degree distribution of growing networks,

when considered as subgraphs in a “universal network”, evolve over time and how these

distributions relate to the distribution of the underlying universal network. The simulation

results show that the evolutionary algorithm preserves the qualitative structure of degree

distribution in the universal network such that evolved subgraphs over an Erdős-Rényi

universal network also have binomial-like degree distributions. However, power-law like

degree distributions can arise under certain parameter regimes and at certain evolutionary

times when the binomial mean approaches 1 which is explained by the well-understood

association between binomial and Poisson distributions for small means. The results imply

that preferential attachment does not arise statistically at the single-gene level and pre-

sumably occurs at the level of interacting protein domains [11, 7] or multiple-gene motifs

[6].
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2 Network Evolution Formulation

We first describe the model in [9]: a network G = (V, E) consists of weighted nodes

V = {vi} with weights {s
(v)
i } and directed edges E = {ei} with weights {s

(e)
i }. Node

weights correspond to whether a gene (or protein) is beneficial, neutral, or disadvantageous

and are drawn randomly from {−1, 0, 1} in such a way that

Pr{s
(v)
i ̸= 0} = p

where p represents the selection pressure. Edge weights correspond to whether gene (or

protein) interactions lead to inhibition or promotion of the target and are randomly drawn

from {−1, 1}. Each interaction ek = vi → vj is considered beneficial if s
(e)
k s

(v)
j > 0 and

damaging otherwise. Accordingly, ek either contributes to the benefit bi or damage di of

both its incident nodes depending on the sign of s
(e)
k s

(v)
j . The network evolution problem

is then stated as follows:

max
V ∗⊂V

∑
vi∈V ∗

bi

subject to
∑

vi∈V ∗
di < D := t

(∑
i∈G

di

)

where D is the maximum allowable damage determined by the tolerance parameter t ≤ 1
as a proportion of total damages in the network.

Once benefits and damages of all nodes in the graph are determined, the problem is shown

to be NP-hard by reduction of the 0/1 knapsack problem. This correspondance with

the knapsack problem inspires the use of what is known of the tractability of knapsack

problems [8] to analyze the effective complexity of the network evolution problem. For

instance, we know that highly correlated value/weight ratios make a knapsack problem

more difficult to solve which may explain certain features of evolved biological networks.

In this section, however, we argue that the above formulation and the knapsack reduction of

[9] have limited applicability to biological networks. First, the above formulation assumes

that the total benefit of a node for a subgraph identified by V ∗ ⊂ V is independent of

the presence of other nodes in V . This is required for nodes to have fixed benefit and

damages and thus the problem to be relatable to knapsack. However, if the model is to be

taken mechanistically, the benefit and damage contributions of edges that do not connect

nodes in V ∗ should be discounted when evaluating the fitness of the subgraph. Thus, if we

incorporate the fact that knapsack weights and values of genes are not independent of the

choice of items, the knapsack correspondance breaks down.
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Second, NP-hardness of the network evolution problem is proved by reducing an arbitrary

0/1 knapsack problem to a network evolution problem. However, the constructed network

evolution problem contains edges with weights outside of {−1, 0, +1}. Therefore, it is pos-

sible that a {−1, 0, +1} network evolution problem is in fact easier than the 0/1 knapsack

problem and thus not necessarily NP-hard.

Third, the calculation of benefit and damage contributions of edges can be improved to

match what is biologically known from gene and protein interactions. When a beneficial

gene is suppressed by another gene, it is biologically appropriate to force the benefit and

damage contributions of the interaction to vanish. Instead, in the above formulation, if flip-

ping the sign of an edge with a beneficial target not only removes the benefit contribution

but it switches to a contribution to the damage of the target gene (which itself remains

beneficial). This can be easily fixed by picking edge weights s
(e)
i from {0, 1} instead of

{−1, +1} in which case all other calculations remain valid.

Finally, we note that this formulation ignores the spatial and temporal complexity of

biological networks. Although this simplification is justified for model tractability, the

equilibrium assumption limits the applicability of the model to real biological networks.

Essentially, by fixing p, t and the beneficial/disadvantageous assignments s
(v)
i to nodes, we

are assuming a fixed (or steady-state) environmental landscape and development state.

3 Evolutionary Algorithm

In this section we summarize the model that is used to simulate evolution by natural

selection on biological networks. The universal network G = (V, E) is constructed as in [9]

but is interpreted differently: V contains all genes (or proteins) that are physically possible,

i.e not limited to what is found in living organisms. The point here is to allow evolution

to carve an optimal subgraph out of the universal network. The set of edges E reflect

the natural interaction between genes (or proteins) and is considered to be determined by

physical law and independent of evolution.

Individuals Ik are identified as subgraphs of G with nodes Vk ⊂ V and edges

Ek = {e = (vi, vj); {vi, vj} ⊂ Vk}

We apply two modifications discussed in the previous section: edge weights s
(e)
i belong to

{0, 1}, and benefits bVk
i and damages dVk

i depend on the choice of subgraph Vk ⊂ V and

are re-calculated for every individual. Each generation is a set of individuals {I1, . . . , IC}
where C ∈ N is a constant representing capacity. The fitness of an individual f(Ik) is
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given by:

f(Ik) =
∑

vi∈Vk

bVk
i

In each iteration of the algorithm the population of C individuals is replaced as follows:

1. Individuals are sorted by fitness such that f(I1) ≤ . . . ≤ f(IC).
2. The least fit k ≤ (1 − s)C individuals are removed from the population where s ≤ 1

represents survivorship.

3. The surviving sC individuals are copied as-is to the next generation.

4. The remaining (1 − s)C spots of the next generation are populated by mutated

descendents of the fittest sC individuals Ik for k > (1 − s)C with fecundity of Ik

proportional to f(Ik).

The process of gene mutation contains a deletion operation and an insertion operation

which wraps a duplication-and-diversification event [5, 11]:

1. Each gene in Vk is inherited by proginy unless it is deleted with probability 1 − pd.

2. Each inherited gene v is duplicated-and-diversified with probability pi in which case

is new gene v′ is added to the proginy. The probability distribution Pr{v′|v} is

subject to one of the experiments.

The above description can be summarized using the following pseudocode:

def next_generation({I_k}, C, s, D, p_d, p_i):
survivors = []
for I_k in {I_k}:

benefit, damage = ... # benefits and damages keyed by node
if sum(damage) > D:

continue
survivors += [I_k]

survivors = sorted(I_k) # in increasing order of total benefit
survivors = survivors[sC:]
next_gen = []
next_gen += survivors # keep the fittest as-is in next generation
for I_k in survivors:

fecundity = ... # proportional to fitness of I_k s.t. sum over all k = (1-s)C
for i in range(fecundity):

offspring_genes = []
for v in V_k:

if bernoulli(p_d):
continue

offspring_genes += [v]
if bernoulli(p_i):

new_gene = ... # drawn according to a specified distribution
offspring_genes += [new_gene]

next_gen += [subgraph(offspring_genes)]
return next_gen
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4 Experiments and Results

The main question we ask in the following experiments is this: “Can a scale-free optimal

graph emerge, under appropriate parameter regimes, from an Erdős-Rényi universal net-

work?” Due to the multitude of parameters involved, we fix a following paramter regime

as the “baseline” and evaluate the effect of changes in paramter values by comparing results

to the baseline configuration.

Parameter Symbol Baseline value

Network size |V | 1000

Network edge probability pe 0.01

Pressure on node weights s
(v)
i p 0.9

Edge positive probability p+ 0.7

Tolerance ratio D/
∑

di t 0.1

Node deletion probability pd 0.1

Node insertion probability pi 0.1

Population capacity C 200

Node weight distribution for s
(v)
i ̸= 0 – uniform

Edge sign s
(e)
i range – {0, 1}

Node insertion distribution – similarity

In addition to what was discussed in the previous section, the last three parameters capture

additional variations on the evolutionary algorithm:

1. Node weights {s
(v)
i } are drawn from {−1, 0, 1} such that for nonzero weights, the pro-

portion of which is dictated by p, the choice is uniform over {−1, +1}. Alternatively,

we wish to investigate how a power law distribution of weights, i.e |s(v)
i | allowed to

exceed 1, affects the topology of optimized subgraphs.

2. We repeat the experiment for edge signs s
(e)
i as in the original model with values

from {−1, +1}.
3. When a node v is duplicated-and-diversified with insertion probability pi we need to

randomly pick a new node v′ from V \ {v} to represented a mutated version of v.

In the simplest case, v′ is drawn uniformly. Alternatively, in order to capture the

fact that the mutant node v′ is probably “similar” to v in some aspects, we allow the

probability of a specific choice of mutatnt v′ to be proportional to its similarity to v

as measured by the number of their shared neighbors.

In each experiment, C individuals are created each containing only one gene and 400 iter-
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ations of the evolutionary algorithm are performed. The evolution of degree distributions,

total benefits and damages and gene counts are plotted for each experiment. To visually

check power-law like patterns, all distributions are plotted in log-log coordinates in which

a power-law distribution appears as a straight decreasing line 1 (Fig. 1). The general

outcome of all performed experiments (Fig. 3, 4 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17)

can be summarized as follows:

1. Early in the evolutionary process all populations appear power-law like due to the fact

that all genes have small degrees in the subgraph. Over the course of optimization

the degree distributions, as well as total benefits, damages and gene counts, can be

qualitatively seen to stabilize.

2. The knapsack solver based on the original formulation of [9] produces degree distri-

butions that are consistent with the outcome of the evolutionary algorithm. This is

surprising since the knapsack solver uses subgraph-independent benefit and damage

assignments for nodes to reverse-reduce the problem to 0/1 knapsack.

3. The evolutionary algorithm seems to preserve the degree distribution the underlying

universal network. In other words, optimized subgraphs have binomial-like distribu-

tions just like the underlying universal network. However, since the binomial distri-

bution is not scale free, degree distributions have different shapes for small binomial

means which may appear power-law like (Fig. 2). This can be verified in every case

by calculating the expected binomial mean from the product of subgraph gene count

and the ER edge probability. When the same algorithm is applied to a biological

power-law distributed network, the optimized subgraphs also show power-law degree

distributions.

4. The main effect of changing the paramters listed above is to speed up or slow down

the optimization process thus snapshots of the population at fixed generation counts

for different parameter regimes merely show the same degree distribution families

(e.g. binomial for ER universal network).

1 All code is available at https://gist.github.com/amirkdv/234d776abf55b1303bc03212512a5ba9.
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5 Figures

Figure 1: In/out degree distributions of all individuals at generations 100, 200, 300,
and 400 (left) and time series of maximum (solid) and minimum (dashed) values
of total benefits (top), total damages (middle), and gene count (bottom) over the
course of 400 generations (right) for baseline parameters. Note the consistency of
degree distributions with those obtained from the knapsack solver.
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Figure 2: Binomial distributions with different means. Note that for small mean
values the distribution can appear similar to a power-law distribution.
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Figure 3: Similar experiment as in Fig. 1 but with sparser connectivity pe = 0.005.
Note the appearance of power-law like distributions, however, see Fig. 4.
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Figure 4: Similar experiment as in Fig. 3 but with larger universal network size
|V | = 5000. This experiment shows that the power-law like distributions seen in 3
are merely due to small binomial means and not a consequence of universal network
sparsity.
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Figure 5: Similar experiment as in Fig. 1 but with higher connectivity pe = 0.05.
The preservation of underlying network degree distribution is most clear in this
example. Note the shifting binomial mean as the gene count (right bottom) increases.
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Figure 6: Similar experiment as in Fig. 1 but with edge signs s
(e)
i taken from

{−1, +1}, as in [9], instead of {0, 1}. This means that suppressing an advantageous
gene contributes to the total damages.
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Figure 7: Similar experiment as in Fig. 1 but with a biological scale-free universal
network instead of the simulated ER network and with uniform choice of inserted
nodes (neighbor similarity ignored). Note that the emerging degree distributions are
all power-law supporting the conclusion that the evolutionary algorithm preserves
the degree distribution of the underlying network.
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Figure 8: Similar experiment as in Fig. 1 but with uniform choice of inserted nodes
instead of using neighbor-based similarity scores.
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Figure 9: Similar experiment as in Fig. 1 but with decreased mutation rates pi =
pd = 0.01. Note that the only effect of this change appears to be a reduction
in convergance rate. This slowing down leads to small binomial means and the
appearance of power-law degree distributions, however, cf. Fig. 10.
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Figure 10: Similar experiment as in Fig. 1 but with decreased mutation rates
pi = pd = 0.05. This experiments confirms that the power-law like distributions
seen in Fig. 9 are merely due to small binomial means.
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Figure 11: Similar experiment as in Fig. 1 but with node weights s
(v)
i drawn from

a power law distribution with exponent γ = 1. Note that this does not change the
qualitative structure of the optimized subgraph degree distributions.
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Figure 12: Similar experiment as in Fig. 1 but with node weights s
(v)
i drawn from

a power law distribution with exponent γ = 2. Note that this does not change the
qualitative structure of the optimized subgraph degree distributions.
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Figure 13: Similar experiment as in Fig. 1 but with reduced pressure p = 0.2. Note
that the large number of neutral nodes slows down the convergance rate with effects
consistent with general findings.
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Figure 14: Similar experiment as in Fig. 1 but with reduced survivorship s = 0.2
(increased competition). Note that this significantly increases the convergence rate,
as expected biologically, without changing the qualitative structure of the outcome
(see Fig. 15 for the opposite scenario).
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Figure 15: Similar experiment as in Fig. 1 but with increased survivorship (reduced
competition) s = 0.8. Under a fixed capacity model, this necessarily reduces the
number of mutations per generation and, thus, reduces the convergance rate.
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Figure 16: Similar experiment as in Fig. 1 but with increased tolerance t = 0.5.
Naturally, this implies a larger size of optimized subgraphs. Note the approach of
degree distributions to the whole graph distribution confirming the general findings.
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Figure 17: Similar experiment as in Fig. 5 but with fitness defined as f(Ik) =∑
bi −

∑
di instead of f(Ik) =

∑
bi. No qualtiative difference can be observed.
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