
Genome Assembly with Long Noisy Reads

Amir Kadivar

April 2016

abstract We consider the problem of de novo genome assembly with reads characterized by

relatively large length and high error rate. We propose an algorithm within the overlap-layout-

consensus framework that can efficiently detect and align overlapping reads. Our approach relies

on statistical properties of k-mers (aka l-tuples or words) that emerge from long sequencing reads

and provides a statistical test that can quickly distinguish between overlapping and non-overlapping

sequences with high power. Furthermore, the algorithm provides an estimate of the relative offset

between overlapping sequences which can be used to solve a banded alignment problem. Mathematical

analysis of various components of the algorithm, its performance on real data, and directions for

future work are presented.

Contents

Background 1

Terminology and scope 2

Overlap discovery algorithm 3

Results and discussion 9

Future directions 13

Appendices 17

Background

Second generation sequencing technologies (e.g. Illumina, 454) are characterized by relatively short
reads (on average 100-500 bps), low error rates, and under 10X coverage with the main challenge of
de novo assembly being the resolution of repeat regions. Third generation sequencing technologies
(e.g. Pacific Biosciences SMRT, Oxford Nanopore MinION) are characterized by longer reads (on
average 5-15 kbps), high error rates (up to %20), and up to 40X coverage. Therefore, single-molecule
sequencing drastically simplifies the problem posed by repetitive structures. However, established

1



assembly schemes do not scale well to the dimensions and accuracy levels of such technologies:
overlap-layout-consensus (OLC) schemes suffer due to the high error rates (specifically high indel
rates) and de-Bruĳn graph schemes suffer from large read lengths.

There have been successful attempts at incorporating SMRT reads into assembly pipelines virtually
all of which fall within the OLC framework. Most commonly, long reads are used in tandem with
second generation techniques mainly in the finishing process and to resolve repetitive structures [1].
Here we are concerned with the problem of assembly using only SMRT reads. Proposed solutions
for this problem include HGAP [2], MHAP [3], and SPARC [4].

Terminology and scope

The de novo genome assembly problem is distinguished from a corresponding, rather easier problem
of mapping reads to an existing reference genome. The discussion that follows applies to both cases
equally while our focus is on the former. For de novo genome assembly, within the OLC framework,
we first seek pairwise alignments between the reads and then hope to somehow combine them into a
multiple sequence alignment which will then be used to recover a consensus sequence for the entire
genome. The natural choice of alignment between reads is what we will refer to as overlap alignment
(or a suffix-prefix alignment).

Given a sequence of reads (Rn)N
n=1 we wish to find the overlap graph G = (V, E) which is a weighted

directed acyclic graph whose vertices V is {Rn}Nn=1. Two reads Ri and Rj are overlapping with
score w, denoted by Ri

w7→ Rj , if a suffix of Ri aligns with a prefix of Rj
1. Our goal is to find an

approximate Ê to the set E of all such edges and we define the sensitivity and specificity of our
results in terms of the number of edges recovered from the true overlap graph (built using a known
reference genome). That is, we wish to minimize both of:

f.n. =
|E \ Ê|
|E|

, and f.p. =
|Ê \ E|
|E|

Our overlap discovery algorithm relies on k-mer methods. Namely, all analysis begins with indexing
all words of length k observed in all reads. This provides, for any pair of reads, a list of seeds,
which are exactly matching words together with their respective positions, in the two reads. We
will propose that the statistical properties of these seeds can be used to significantly reduce the
time spent on alignment. First, the distribution of seeds can be used to rule out possible overlaps
without alignment. Second, when alignment is necessary the same statistical properties can be used
to reduce the complexity of alignment from quadratic to linear time and space by using a banded
variant of the alignment algorithm.

A seed z for reads Ri and Rj is a pair of exactly matching substrings of Ri and Rj . If the starting
positions of the shared word is zi and zj in Ri and Rj , we call zi − zj the shift of the seed z. We
1This is accurate as long as the alignment between the Ri and Rj is not substring. The accurate formulation is this:

Ri
w7→ Rj if the high-scoring alignment between the two reaches the boundary of both sequences and starts at the

beginning of Rj .

2



will show that the distribution of seed shifts for a pair of reads can be used to i) rule out potential
overlaps with marginal computational cost, and i) provide a hint for the diagonal band of the
dynamic programming table that should be populated if the sequences are potentially overlapping.

The statistical property of interest is the distribution of shifts. The heuristic is that if two sequences
are overlapping there must exist a narrow diagonal range in the dynamic programming table where
there is a relatively high concentration of seeds. Note that finding this range does not require any
alignment:

Figure 1: Example raster plots of seeds demonstrating the central idea of dense diagonal bands. Left:
Seeds for a pair of overlapping sequences are plotted in the plane according to their staring
positions in each read. The overlaid gray band is the most dense band as detected by our
algorithm. The green band is calculated from the mappings of each read to a known
reference genome using blasr (see below). Right: Same for a pair of non-overlapping
sequences.

Overlap discovery algorithm

The algorithm proceeds as follows (see pseudo-code below):

1. Scan all occurrences of all words in all sequences.
2. Exclude all words that appear too often in the collection of reads.
3. For each pair of reads find a diagonal range with a significant number of seeds.
4. If such a range does not exist, rule out the possibility of overlap.
5. If such a range exists, perform a banded alignment in linear time over the found range. If the
alignment has acceptable quality report the overlap.

In each step the following parameters are exposed to the user (analyzed in detail in further sections):

1. The length of k-mers.
2. Repetitive words are an attractive target for optimization since they are few in numbers but
they appear in many sequences and lead to many seeds. Their exclusion is based on the

3



heuristic that they potentially are part of repeat regions. This requires a threshold for the
significance of observing a given word a large number of times across reads.

3. Shift statistic calculations depend on two global parameters: g, ϵ. The former is the probability
of a gap introduced at an arbitrary position by the sequencing machine and the latter is a
parameter internal to the probabilistic model (see analysis below and appendix I for details).

4. Ruling out non-overlapping sequences requires a minimum threshold for significance of the
number of seeds observed in a diagonal range.

5. Banded alignments are terminated prior to termination according to a stop criterion if they
appear to not be leading to high scores. Completed alignments are examined based on mul-
tiple acceptance criteria which exclude barely-overlapping and mostly-overlapping pairs of
sequences (defined below).

Detecting dense diagonal bands

For each pair of reads (Ri, Rj ), overlapping or not, we first seek to find the shift range with the
highest density of seeds (i.e number of seeds divided by shift range area).

Consider the distribution of seeds in the (zi, zj ) plane where zi, zj are the starting coordinates of
each seed. In this plane, all seeds reside within the rectangleM = [0, |Ri|]×[0, |Rj |]. We assume that
under the null hypothesis (the two sequences are not overlapping) seeds are uniformly distributed in
M . Further, in this plane a shift window [d− r, d+ r] corresponds to a trapezoidal strip constrained
between two main quadrant diagonals centered around the d diagonal and at anti-diagonal distance
r of one another. A seed (zi, zj ) lies within the strip if |zi − zj − d| < r. For any shift d, suppose
we observe n seeds within the shift range [d− r, d + r]. The p-value under the null hypothesis is:

Pr(Xd ≥ n) ≃
(

Ad

|Ri| · |Rj |

)n

where Ad is the area of the trapezoidal strip corresponding to shift d:

Ad ≃ 2r
√

(|Ri| − |d|)2 + (|Rj | − |d|)2

The final significance value we use to find the most significant shift is:

σ(d) = log(|Ri| + |Rj |) + n [log(Ad) − log(|Ri|) − log(|Rj |)]

where the first term is a Bonferroni correction since the process involves testing the same hypothesis
for |Ri| + |Rj | different values of d.

As the above significance formula indicates, each seed has a constant additive effect on the total
significance of all bands it appears in. Therefore, with a justifiable approximation, the significance
values can be collected in one-pass as seeds are found between each read-pair (see pseudo-code
below) by assuming that each seed z contributes to those bands whose center shift d′ lies in the
corresponding band centered at z. In other words, z contributes to σ(d) for all d in the set:

{d : |d− dz| < r(dz )}

where dz = zi − zj is the shift of z and r(d) assigns a band radius to each shift.

4



Choice of diagonal band width

As a consequence of the results in appendix I, this parameter can be absorbed in the probabilistic
model used for banded alignment: the same r∗ used for the banded alignment can be used for
detecting bands dense with seeds. As the analysis below makes clear, the width of a diagonal band
is obtained such that there is a small probability for an alignment with assumed gap probabilities
which starts at the center of the band to escape it by its end. As we will see, a fixed choice of width
sacrifices too much discriminatory power and thus, the diagonal band width should be calculated
for each read-pair and at each shift value. In the analysis of appendix I, it is shown that the exact
analytic formula of the probabilistic model are too inefficient for this approach. Instead, approximate
schemes (with bound error) are presented that effectively remove the overhead of calculating the
band radius at every shift for every read-pair.

Banded alignment

A banded alignment problem with width B is one where only those alignments are considered that
entirely lie within a range of diagonals in the DP table with maximum anti-diagonal distance B. For
a pair of sequences with length O(n) both time and space complexity of a global banded alignment
is O(Bn) instead of the usual O(n2) (see appendix IV). Some considerations are due for applying
banded alignments to the overlap discovery problem.

1 Applicability to overlap discovery

Banded local alignments do not reduce the complexity since the band constraint is with respect
to the starting position of the alignment and the entire DP table must be populated regardless.
The same applies to the general overlap discovery problem. However, if we limit the search to
those alignments confined to a diagonal range (for example, the shift range proposed by a statistical
analysis of shifts) time and space complexity are reduced to O(Bn) where n = min(|S|, |T |). This
means banded overlap alignment is suitable for both overlap discovery in de novo assembly and
mapping reads to existing reference genomes.

2 Choice of band radius

Consider two sequences S and T . The range of possible shifts is: {−|T |, . . . , 0, . . . , |S|}. Clearly the
optimal band radius varies as the starting shift sweeps the range of possible values, with starting
shifts closer to zero requiring a larger radius.

We formulate the problem as follows: we wish to find the smallest band radius r∗ such that the
probability ϵ of missing the true alignment due to it leaving the enforced band is a given fixed value

5



(say 10−3). The calculations in appendix I provide the following approximation 2:

r ≥ 2erf−1(1− ϵ)
√

g(1− g)K

where g is the gap probability and K is the expected length of the alignment. See appendix I for
probabilistic analysis.

3 Choice of K

The quantity K in the above formula is the (unknown) length of an arbitrary alignment. The range
of possible values of K is quite large: an all indel alignment would be roughly twice as long as an all
matching alignment. It seems reasonable, but not yet justified, to use the following approximation
for a typical high scoring alignment:

K ≃ 2
2− g

L

where g is the gap probability and L is the length of an all-matching alignment:

L(d) = min(|S| − d, |T |) +min(d, 0)

4 Stop Criterion

In order to terminate alignments which do not “seem promising” we keep track of the number of
new global minimums in score encountered throughout the alignment and stop the extension as
soon as the number of new minima encountered exceeds a threshold (e.g. 10). This is motivated by
the observation that the progression of alignment score has very simple long range dynamics: for
overlapping sequences the score continually increases and for non-overlapping sequences the score
continually decreases.

5 Acceptance Criteria

A common category of f.p.’s is that of those caused by mostly-overlapping sequences. Two reads
are mostly-overlapping if their correct overlap alignment starts and/or ends very close to the main
diagonal of the dynamic programming table (e.g. 200 bp). In such cases the direction of the overlap
is not robustly determined by the optimal alignment hence potentially reversing the direction of a
heavy edge in the overlap graph. Due to the high sensitivity of the layout path to f.p.’s and the
small information content of such read pairs, we choose to not add an edge (in either direction) to
the graph if two reads are mostly-overlapping 3.

Similarly, barely-overlapping sequences are those that only overlap over a short (e.g. 200 bp) sub-
string. Such read-pairs are also risky for two reasons. First, parameter ranges that ensure their

2Here is a typical value: for aligning two sequences ≥ 10 kbp in length, a band radius of 150 is enough to guarantee
ϵ < 0.001 under gap probability 0.1.

3An alternative would be to add both edges to the graph or to remove one of the reads entirely from the graph.

6



Figure 2: Progression of scores throughout the alignment of overlapping (green)
and non-overlapping (red) read-pairs.

7



discovery necessarily misidentifies some non-overlapping read pairs as overlapping. Second, short
overlaps may be artificially induced by repeat regions. By ignoring such short overlaps we circum-
vent the possibility of mistaking non-overlapping reads with similar shared repeat regions at their
opposite endpoints (suffix of one and prefix of the other).

Finally, since alignment quality is the sole measure of ruling out non-overlapping read-pairs with
high shift peaks some measure of alignment quality should be incorporated. In the results we present
below percentage of exact matches (e.g. with cutoff %70) have been used as such a measure. Note
that ideally this criterion and the “max. new min.s” criteria should be merged into one exposed
parameter (see the section on future directions).

Repetitive words

Repeat regions of various kinds are a challenge in any eukaryotic de novo assembly. The challenge
has two components:

• Possibility of mistaking various copies of a repeat region along the genome leading to false
positive overlaps.

• Time wasted on trying to extend seeds coming from various copies of a repeat region.

A simple idea is to discard seeds that appear “too often” across the reads. Preliminary tests show
improvements from discarding words with very small p-values (roughly e−5). See appendix II for
probabilistic analysis.

Implementation

All code is open source and available at github.com/amirkdv/biseqt and documentation as well as
library API can be found at biseqt.readthedocs.org 4. The dynamic programming algorithm for
sequence alignment is implemented in C. All k-mer handling (B-tree indices, disk IO, querying,
etc.) are delegated to SQLite which is a fast, serverless, SQL database implemented in C. All
graph handling (cycle breaking, topological sorting of DAG’s, and drawing graphs; not reported
here) are delegated to igraph which is implemented in C/C++. Everything else is implemented in
Python interfacing the C component via a foreign-function interface (relying on cffi from PyPI)
and interfacing SQLite and igraph via their official python modules (igraph and sqlite3 from PyPI,
respectively).

Pseudo-code

Here is a Python-esque pseudo-code for the overlap discovery algorithm:

1 # Given two sequences tries to find an overlap alignment between them:

2 def discover_overlap(S, T):

4Note that under the currently heavy load of active development, the documentation remains slightly out of date.

8

https://github.com/amirkdv/biseqt
https://biseqt.readthedocs.org
https://www.sqlite.org/
http://igraph.org/python


3 S_word_hits = scan(S) # a map from words to positions in S

4 T_word_hits = scan(T) # a map from words to positions in T

5 shift_scores = {} # a map from diagonal number to score

6 # seeds arise from words appearing in both S and T at least once:

7 for word in S_word_hits.intersection(T_word_hits):

8 if repetitive(word):

9 continue

10 # each pair of occurrences of a word in S and T defines a seed:

11 for i, j in S_word_hits[word] × T_word_hits[word]:

12 shift = i - j

13 # all neighboring diagonals (within distance r) get a score

14 # contribution s from seed (i,j):

15 r = radius(|S|, |T|, shift)

16 for k in range(shift - r, shift + r):

17 shift_scores[shift] += seed_contribution(|S|, |T|, shift)

18

19 if max(shift_scores) > min_score:

20 # max_shift is the shift that accumulated the highest score

21 r = radius(|S|, |T|, max_shift)

22 return align(S, T, between=(max_shift - r, max_shift + r))

Correct labels

To test the algorithm we rely on a correct labeling of read pairs as overlapping and non-overlapping.
This requires mapping the reads to a reference genome using another tool and labeling read pairs
according to their mapped coordinates. Three alternatives, bwa [5], blasr [6], and lastz were used
under their default parameters and under adjusted parameters to make sure all programs are com-
paring sequences equally. Under both cases, the mappings of blasr and bwa were more consistent
with each other than with lastz.

Results and discussion

In all the following results 1055 Pac Bio reads corresponding to chromosome 1 of Leishmania Dono-
vani are provided to the algorithm. Correct mappings are obtained by blasr and the correct decision
of overlap vs non-overlap is obtained from these mappings. Of all the roughly 2 million read-pairs
to be considered (including reverse complements), only about %2 are truly overlapping. The first
measure of the success for our algorithm is its discriminatory power based only on shift statistics.
Since not all read-pairs can be distinguished solely on this basis, a second measure of accuracy is
the f.p. and f.n. rates over the assembled overlap graph as compared to the graph obtained from
mapping to a reference genome by blasr.

9



Figure 3: The agreement between blasr, bwa, and lastz over Pac Bio reads cor-
responding to chromosome 1 of Leishmenia Donovani. In each plot
green dots represent reads mapped to the same strand by each tool
and the coordinates represent the distance in mapped positions. Red
dots represent reads mapped to opposite strands by the two tools. Top:
comparison of mappings by bwa and blasr. Bottom: comparison of
mappings by lastz and blasr.

10



Discrimination by shift statistics

Shift statistics are capable of discarding the overwhelming majority of non-overlapping read pairs
based on their lack of a dense diagonal band. Fig. 4 summarizes the discriminatory power of our
algorithm: with appropriate choice of cutoff, %99 of non-overlapping read-pairs can be discarded
while only misidentifying %5 of overlapping read-pairs. The entire operation for the Leishmania
dataset (from scanning words to finding the most dense band for each read-pair) completes in about
1 hour on a personal computer 5 with less than 3 GB of space 6.

Figure 4: Cumulative distribution of the significance σ(d) of the most dense di-
agonal band for Pac Bio read-pairs corresponding to chromosome 1 of
Leishmenia Donovani. The red curve is the cumulative distribution
of non-overlapping reads (curve is that of overlapping read-pairs. All
barely-overlapping reads (<500bp) are excluded. The shaded regions
show the discarded non-overlapping pairs and the leftover overlapping
pairs after applying a significance cutoff of σ > 50 for overlapping
pairs.

Banded alignments

A banded alignment following the shift statistic analysis is necessary for two reasons. First, as seen
above, shift statistic alone is not enough to identify all overlapping pairs. Second, depending on
the protocol of communication between the overlap-detection phase and the rest of the assembly
pipeline, a more accurate account of overlaps (e.g. alignments) are needed (however, see section

5Ubuntu 14.04 with an Intel quad-core 3.67 Hz CPU.
6The majority of space consumption is in external memory, i.e shuffled back and forth to disk. RAM usage never exceeds

1 GB.

11



on future directions). Figure 5 shows an example of successful completion of the algorithm in two
phases: first, a dense diagonal band is identified; then, a banded alignment confirms the overlap
and provides an edit transcript.

Over the entire dataset, performing banded alignments over the chosen read-pairs (roughly 50,000)
takes about 4.5 hrs on a personal computer 7. However, f.n and f.p. rates were surprisingly high:
%45 and %10, respectively (see below).

Future directions

Mapping to reference

The current results were obtained by comparing to blasr mappings. Similar results were obtained
when comparing to correct overlaps obtained by comparing to bwa mappings. However, there remain
crucial questions about the quality of “true” overlap labels in the data set. First, despite rough
agreement between the two tools, which are standards for aligning Pac Bio reads 8, they differ
considerably on position: roughly %30 of reads are mapped to positions farther than 1.5 kbp of each
other by blasr and bwa. This is a large margin compared to average read lengths (5-15 kbp) and can
affect much of the results. Second, a true test of the viability of our algorithm is to compare it to
blasr and bwa for the simpler problem of mapping reads to a reference. This has been implemented
currently yielding wildly different mappings. This and the unexpectedly low performance of banded
alignment outputs presented above possibly hint towards an implementation bug that needs to be
investigated. Finally, the filtering of chromosome 1 reads from the larger collection of sequencing
output may contain errors of its own 9.

Overlap discovery: accuracy

Aside from the possibility of corruption in correct labels, potential offenders for low accuracy are:

• As mentioned above, implementation bugs.
• Due to the slow pace of obtaining results on a personal computer, all parameters where fixed
to rough guesses obtained from experiments on smaller portions of the data set. These include
parameters highlighted above and the parameters of the alignment (and implicit assumptions
of gap probabilities by the sequencing machine). A series of parameter-sweeping runs are
needed to explore the possibility of improvements by better choice of parameters.

• Both blasr and bwa perform soft clipping of the reads which complicates calculating the true
mapping for the entire read (our algorithm does not perform soft clipping). Currently, the
starting position is simply pulled back by the size of soft clipping. However, it remains unclear

7System spec and space consumption profile the same as before.
8blasr is developed and maintained by the Pacific Biosciences team and bwa [5] has been used as baseline in other studies
[2], [3] and has recently introduced a a default parameter regime tuned for Pac Bio reads (usage via bwa mem -x pacbio

...).
9In fact, both blasr and bwa report low quality on a number of reads and blasr refuses to map 10 of the reads.

12



Figure 5: Example of successful completion of the algorithm. Top left The seed rasterplot for two
reads. The gray overlay band is the band detected by our algorithm and the green band
is the shift calculated from mapping to reference by blasr. Top right The rasterplot of the
resulting alignment, solved over the hinted band. The inset histogram shows the frequency
of each edit operation (M is match, S is substitution, and - is indel). Bottom The same
alignment rasterplot zoomed in on the relevant section.

13



what the effects of this are, and if they are in any way related to often-seen anomalous cases
where the estimated shift between supposedly overlapping reads differs significantly with the
location of a dense diagonal band (cf. Fig. 6). Furthermore, the reference genome used
to produce the results above contains many ambiguous regions which are in turn treated
ambiguously by blasr and bwa (e.g the latter replaces any N with a random nucleotide). The
effects of ambiguous regions has not yet been investigated.

Figure 6: Examples of anomalous cases where the estimated shift between overlapping reads
derived from mapping to reference by ‘blasr‘ or ‘bwa‘ is significantly different
from the most dense diagonal band. As before, the gray band is detected by our
algorithm and the green band is what mapping by reference implies.

Overlap discovery: speed

Although preliminary results are acceptable and the algorithm and implementation is highly par-
allelizable, there is potentially room for significant performance improvements. First, despite the
light weight and comparably stellar performance of SQLite among SQL databsases, it is possible
that better suited external memory schemes may yield high performance improvements 10. Second,
although our dynamic programming algorithm is implemented in C, shift statistic calculations are
performed in Python for convenience of IO operations and communication with SQLite. Profiling

10An alternative is HDF (which is used by blasr internally).

14



these calculations and identifying hot loops that can be moved to C is needed.

Consensus sequence

Known approaches for incorporating pairwise alignments of long noisy reads into a consensus se-
quence include HGAP [2], T-Coffee [7], and POA [8], [9]; with all of which our algorithm can be,
in full or in part, integrated. There are, however, alternative heuristics based on the strength and
weaknesses of our algorithm. For instance, suppose once a reasonable Ê is found we proceed as
follows: 1. find a layout path by solving a heaviest path problem over the overlap DAG 11., 2.
build a “scaffold” by solving a small consensus problem over the above layout path, 3. align all
vertices that were left out of the layout path onto the scaffold and return a complete layout path,
4. solve the consensus problem as usual. Alternatively, the shift estimates can be used to divide the
unknown genome into regions where it is roughly known, without alignment, which parts of which
reads will contribute. Then multiple MSA problems can be solved over each such regions.

Chainable seeds

When counting all seeds that lie within a diagonal strip we are ignoring the fact that not all such
seeds can belong to the same alignment. Furthermore, it could be possible to recover the overall
alignment simply by chaining the seeds, namely by only solving the DP algorithm over the distances
between “chainable” seeds. The idea of chaining has already been discussed in the literature [10], [11].
This can be achieved by organizing the seeds from a diagonal band into a DAG where each seed
is connected to its closest chainable neighbors. Appendix III provides a preliminary probabilistic
model for discrimination based on the distance between subsequent seeds in such a chain.

11Note that our overlap graph is weighted and directed differently than the usual OLC graph which requirres a Hamiltonian
path for finding the layout path.

15



References

[1] S. Koren, M. C. Schatz, B. P. Walenz, J. Martin, J. T. Howard, G. Ganapathy, Z. Wang, D. A.
Rasko, W. R. McCombie, E. D. Jarvis, and A. M. Phillippy, “Hybrid error correction and de
novo assembly of single-molecule sequencing reads,” Nat Biotech, vol. 30, no. 7, pp. 693–700,
2012. DOI: 10.1038/nbt.2280.

[2] C.-S. Chin, D. H. Alexander, P. Marks, A. A. Klammer, J. Drake, C. Heiner, A. Clum, A.
Copeland, J. Huddleston, E. E. Eichler, S. W. Turner, and J. Korlach, “Nonhybrid, finished
microbial genome assemblies from long-read smrt sequencing data,” Nat Meth, vol. 10, no. 6,
pp. 563–569, 2013, Article.

[3] K. Berlin, S. Koren, C.-S. Chin, J. P. Drake, J. M. Landolin, and A. M. Phillippy, “Assembling
large genomes with single-molecule sequencing and locality-sensitive hashing,” Nat Biotech, vol.
33, no. 6, pp. 623–630, 2015, Research.

[4] C. Ye and S. Ma, “Sparc: A sparsity-based consensus algorithm for long erroneous sequencing
reads,” PeerJ PrePrints, Tech. Rep., 2015.

[5] H. Li and R. Durbin, “Fast and accurate short read alignment with burrows–wheeler trans-
form,” Bioinformatics, vol. 25, no. 14, pp. 1754–1760, 2009.

[6] M. J. Chaisson and G. Tesler, “Mapping single molecule sequencing reads using basic local
alignment with successive refinement (blasr): Application and theory,” BMC bioinformatics,
vol. 13, no. 1, p. 238, 2012.

[7] C. Notredame, D. G. Higgins, and J. Heringa, “T-coffee: A novel method for fast and accurate
multiple sequence alignment,” Journal of molecular biology, vol. 302, no. 1, pp. 205–217, 2000.

[8] C. Lee, C. Grasso, and M. F. Sharlow, “Multiple sequence alignment using partial order graphs,”
Bioinformatics, vol. 18, no. 3, pp. 452–464, 2002.

[9] C. Grasso and C. Lee, “Combining partial order alignment and progressive multiple sequence
alignment increases alignment speed and scalability to very large alignment problems,” Bioin-
formatics, vol. 20, no. 10, pp. 1546–1556, 2004.

[10] M. Brudno, M. Chapman, B. Göttgens, S. Batzoglou, and B. Morgenstern, “Fast and sensitive
multiple alignment of large genomic sequences,” BMC bioinformatics, vol. 4, no. 1, p. 66, 2003.

[11] L. Noé and G. Kucherov, “Improved hit criteria for dna local alignment,” BMC bioinformatics,
vol. 5, no. 1, p. 149, 2004.

[12] W. Feller, An introduction to probability theory and its applications, ser. Wiley series in prob-
ability and mathematical statistics: Probability and mathematical statistics. Wiley, 1971.

[13] S. Aki, H. Kuboki, and K. Hirano, “On discrete distributions of order k,” Annals of the Institute
of Statistical Mathematics, vol. 36, no. 1, pp. 431–440, 1984.

[14] A. N. Philippou, C. Georghiou, and G. N. Philippou, “A generalized geometric distribution
and some of its properties,” Statistics & Probability Letters, vol. 1, no. 4, pp. 171–175, 1983.

[15] M. J. Barry and A. J. L. Bello, “The moment generating function of the geometric distribution
of order k,” The Fibonacci Quarterly, vol. 31, pp. 178–180, 1993.

16

http://dx.doi.org/10.1038/nbt.2280


Appendices

I Statistics of seed shifts

Let Ri and Rj be any two reads and let them have a set of n seeds {zk}nk=1 where seed zk has
coordinates (zk

i , zk
j ). Let the shifts of the seeds be {dk}nk=1 where

dk = zk
i − zk

j

Each seed, through its coordinates, implies a certain offset for the correct overlap alignment of
Ri and Rj . The central idea is that if Ri and Rj are actually overlapping reads, there must be
concentration of shift values. That is, if one looks at the histogram of {dk}nk=1 there is a certain
“peakedness” close to the correct shift between the sequences. In fact, one can visually verify that
this is typically the case 12.

Consider an alignment of length K. The succession of anti-diagonal distances (from the starting
diagonal) along the cells of the alignment gives rise to a 1d random walk over Z. For the random
walk, the probability of +1 and -1 moves are both p (corresponding to an indel in the alignment)
and the probability of no move (corresponding to a match or substitution) is 1− 2p.

Define u(n, k) to be the probability of such a random walk starting at position n (i.e starting shift
n) to be within a band of radius r at time k (i.e after k steps of the alignment). The recurrence
relation for u is:

u(n, k) = pu(n− 1, k − 1) + pu(n + 1, k − 1) + (1− 2p)u(n, k − 1)

subject to boundary condition u(n, k) = 0 for any n > r at all times k. Our goal is to find a closed
form and invertible solution to u(n, k) which would be used to find r such that u(0, K) > 1− ϵ for
given K and ϵ.

Generating Functions

There are two potential formal power series to consider for solving for u(n, k). Neither lead to a
usable solution. The first alternative is the following:

fn(x) =
∑

k

u(n, k)xk

Substituting the series into the recurrence relation leads to the recurrence fn+1 = gfn−fn−1, where
g = 1/px + 2− 1/p, which is no easier than the original problem. The second alternative is:

fk (x) =
∑

n

u(n, k)xn

which then gives the solution:

fk (x) =
(

px + (1− 2p) +
p

x

)k
f0(x)

12The most common exception is when two reads are only weakly overlapping, i.e they overlap on a short substring, which
is neither surprising nor problematic.

17



where:

f0(x) =
r∑

i=−r

xi

This is again a recurrence relation that has to be solved in quadratic time for every round of band
calculation (this is precisely what [11] does) which is unacceptable for the size of the genome assembly
problem 13.

Diffusion equation

We can rearrange the recurrence relation into the following form:

u(n, k) − u(n, k − 1) = p [u(n− 1, k − 1) + pu(n + 1, k − 1) − 2u(n, k − 1)]

which is precisely the discretization of the 1D diffusion equation ut = puxx. We can now argue that
u(n, k) can be approximated by the analytic closed form solution of the diffusion equation, subject
to corresponding boundary conditions. This would be valid if the discretization above is numerically
stable. The stability criterion for the finite difference approximation of the diffusion equation is:

p ≤ (∆x)2

2∆t

In our case we have ∆x = ∆t = 1 and thus the stability criterion is p ≤ 1/2 which is true since
1− 2p ≥ 0.

Numerics

The continuous diffusion equation corresponding to our recurrence relation is the following IBVP:
ut = puxx

u(r, t) = u(−r, t) = 0

u(x, 0) = g(x)

where g(x) is the unit impulse function centered at 0 with radius r, i.e g(x) = 0 if |x| > r and
g(x) = 1 otherwise.

Recall that in the end, our goal is to find the smallest value r∗ such that the solution u(x, t) of the
above system for r = r∗ satisfies:

u(0, K) ≥ 1− ϵ

for known ϵ (sensitivity parameter) and K (“expected” alignment length calculated from the shift d

and the sequence lengths |S| and |T |).

13Generally when using formal power series to solve recurrence relations, one hopes to find an analytic closed form for
resulting power series and use McLaurin expansion to make it a “concrete”, rather than formal, power series. But here
our solution involves another recurrence relation and it involves negative powers of x which makes McLaurin expansion
irrelevant.

18



If the boundary condition was not there, we could have solved the IVP problem using the Fourier
transform and arrive at a nice analytic solution involving the erf function whose inverse is (numer-
ically) known. We will return to this later. In the presence of the boundary constraint, however,
the Fourier transform is inapplicable and the separation of variables algorithm gives the solution in
the form of a generalized Fourier series. The main steps of calculations are listed below but note
that a series solution is undesirable since the amount of calculation needed to find its inverse is
unacceptable 14.

• We wish to solve the eigenvalue problem for −∂/∂t and −∂2/∂x2 under the given boundary
conditions, i.e we seek common eigenvalues λn and eigenfunctions Xn and Tn.

• The spatial eigenvalues are:

λ′
n =

(nπ

r

)2
, λn =

(
(n + 1

2 )π
r

)2

with eigenfunctions. Xn = cos(
√

λnx) and X ′
n = sin(

√
λ′

nx). The differential operator
−∂2/∂x2 can be checked to be symmetric with respect to the boundary conditions and therefore
the spatial eigenfunctions are necessarily orthogonal.

• The general solution is therefore found by finding (an) and (bn) such that:

u(x, t) =
∞∑

n=0
exp(−pλnt)Xn +

∞∑
n=1

exp(−pλ′
nt)X ′

n

satisfies u(x, 0) = g(x). It follows that (an) and (bn) are the coefficients of the generalized
Fourier series of g(x) in the basis of the orthogonal eigenfunctions

∪
n∈N{Xn, X ′

n}. This gives:

an =
2(−1)n

(n + 1
2 )π

, bn =
2(−1)n+1

nπ

The quantity we wish to bound is:

u(0, K) =
∞∑

n=0

(−1)n

(2n + 1)π
exp

(
−pK

(n + 1
2 )π

r

)

We now seek an approximation to this which is faster to compute than root finding on a series.

Proposition

(Approximate Problem): Let P̂r be the following IVP obtained by relaxing the boundary condition
of Pr: L ût = 0

û(x, 0) = 1 over (−r, r)

Define r∗ to be:
r∗ ≡ 2

√
pT erf−1(1− ϵ)

14Recall that every time any shift of any pair of seeds is considered, either for seed distribution or banded alignment, we
need to calculate an appropriate radius.

19



Then the solution û of P̂r∗ satisfies:
û(0, T ) ≥ 1− ϵ

proof : For P̂r Fourier transform would be applicable yielding the solution: û = Φ ∗ û(x, 0) where
the convolution is over x and Φ is the diffusion kernel:

Φ(x, t) =
1√

4πpt
exp(− x2

4pt
)

At any time t, this is precisely the probability density function of N (0,
√

2pt) with cumulative
distribution:

F (x; t) =
1
2

[
1 + erf

(
x

2
√

pt

)]
Thus:

û(x, t) = F (x + r; t) − F (x− r; t) =
1
2

[
erf
(

x + r

2
√

pt

)
− erf

(
x− r

2
√

pt

)]
implying:

û(0, T ) = erf
(

r

2
√

pT

)
Noting that erf is a monotonically increasing function completes the proof. ■

Remark

The formula for û(x, t) simplifies at x = 0 and at x = ±r:

û(0, t) = erf
(

r

2
√

pt

)
and û(±r, t) =

1
2

erf
(

r√
pt

)
(1)

Proposition

(Accuracy of approximation): Let r∗ be such that the solution û(x, t) of the approximate IVP P̂r∗

satisfies:
û(0, T ) ≥ 1− ϵ

Then the solution u(x, t) of the exact IBVP Pr∗ satisfies:

u(0, T ) ≥ 1− 3
2

ϵ

proof : Define the residue v(x, t) = û(x, t) − u(x, t). Clearly, we have v(x, t) ≥ 0 for all x and t > 0
and we wish to show:

v(0, T ) ≤ 1
2

ϵ

We know that v satisfies the IBVP:
L v = 0

v(x, 0) = 0 over (−r, r)

v(±r, t) = f (t)

20



where, using (1), we have defined:

f (t) ≡ û(±r, t) =
1
2

erf
(

r√
pt

)
with f (0) = 1/2 to maintain continuity. Now define h(x, t) for t ≥ 0 by

h(x, t) = f (t) − v(x, t)

The function h satisfies the IBVP:
L h = ḟ

h(x, 0) = 1
2 over (−r, r)

h(±r, t) = 0

The solution is the sum of a particular solution and a homogenous solution:

h(x, t) =
1
2

û(x, t) + [Φ ∗ ḟ ]x,t

where the convolution is over both x and t:

[Φ ∗ ḟ ]x,t =

∫ t

0

∫ ∞

−∞
Φ(x− y, t− s)ḟ (s)dyds

Therefore:

h(0, T ) =
1
2

û(0, T ) +
∫ T

0
ḟ (s)

∫ ∞

−∞
Φ(y, T − s)dyds

=
1
2

û(0, T ) +
∫ T

0
ḟ (s)ds =

1
2

û(0, T ) + f (T ) − 1
2

where in the last step we have used the fact that Φ(·, t) is a probability distribution over R for any
t. Finally:

v(0, T ) = f (T ) − h(0, T ) =
1
2

(1− û(0, T )) ≤ 1
2

ϵ

■

Corollary

(Approximation Algorithm): It follows that if r∗ is defined as:

r∗ ≡ 2
√

pT erf−1
(

1− 2ϵ

3

)
then the solution u of Pr∗ satisfies:

u(0, T ) ≥ 1− ϵ

21



II Repetitive words

Let w be any k-mer and let L be the sum of the lengths of all reads. Let Xw be the random variable
corresponding to the number of occurrences of w. We make the following simplifying assumptions:

1. Ignore read boundaries and assume Xw corresponds to the number of occurrences of w in a
random sequence of length L. Further, since k ≪ L we can approximate the total number of
words by L (instead of L− k + 1).

2. Assume any given word w has the same probability of appearing at any position along L. 15

We can thus denote by p the probability that a k-mer from an arbitrary position of the genome
is w, for a fixed k and any k-mer w.

3. Assume subsequent nucleotides in any word are independent of one another and all appear
uniformly. That is, p = |Σ|−k.

Given the above, we get the binomial distribution of Xw ∼ B(L, pw). Since L is quite large (at
least 108 nucleotides) we can approximate the binomial distribution by a normal distribution 16

: Xw ∼ N
(
Lpw,

√
Lpw (1− pw)

)
. A Bonferroni correction of N is also applied where N , the

total number of words, is the number of simultaneous hypotheses considered. A significance (log of
corrected p-value) threshold of −5 excludes about 10% of all words in the Leishmania data set.

15This ignores local interactions. For example if the word at position 1 is AAAC then the word at position 2 cannot be ACAC.
16The limiting process is not Poisson since B(n, p) only converges to a Poisson process as n → ∞ if np is kept constant
which is not our case. The normal approximation only demands n → ∞.

22



III Chaining seeds

We now consider the following problem: given a set of seeds within a diagonal strip of the dynamic
programming table, which partial overlap alignment maximizes the likelihood of the observed seeds,
where a partial overlap alignment is a sequence of chainable seeds. This can be reduced (detailed
analysis will follow in another report) to a heaviest-path problem over the DAG of all seeds in the
given diagonal strip where the weight of edges connecting two seeds is obtained from calculating the
the probability that a sub-alignment of length n does not contain any seeds of length k and. We
noted earlier that this corresponds to the probability distribution of waiting times between runs of
k successes in a sequence of i.i.d Bernoulli trials (where k is the word length). Some combinatorial
properties of this distribution, known as the k-th order geometric distribution, are known [12]–[15],
but they are not computationally useful. We here propose an exact algorithm to calculate this
distribution efficiently.

Computational Requirements

We seek the probability distribution f (n; w) of a sub-alignment of length n containing no seed of
length w. However, as opposed to the diagonal distance case, we do not have the complication of
dependence on diagonal position. Therefore, it suffices to solve a recurrence relation once and use
the results for all sequence comparisons.

Probabilistic Model

Consider the following Markov chain where w is the word length and p is the probability of an exact
match at any given position of the alignment:

23



Let u(n, k) be the probability of being at state n at time k. Since u(n, w) is the probability of
observing a seed by the n-th step of the alignment the desired distribution f (n) is given by:

f (n; w) = 1− u(n, w)

The recurrence relation of u(n, k) for 0 < n < w is:

u(n, k) = pu(n− 1, k − 1)

with boundary and initial conditions:

u(w, k) = pu(w − 1, k − 1) + u(w, k − 1)

u(0, k) = 1−
w∑

n=1
p(n, k)

We know that f (n; w) is decreasing and thus, in practice, we only need to calculate f (n) upto some
threshold, say for all n such that f (n; w) > ϵ. We then solve the recurrence relation in increasing
order of n and decreasing order of k as long as u(n, w) < 1− ϵ. The following is a plot of u(n, w) for
w = 10, p = 0.85, and ϵ = 10−3. Since the very same distribution is used for all sequence comparisons
the computational cost is effectively zero.

24



IV Mapping Bands to Rectangular Grids

In order to only allocate the necessary memory for the banded overlap alignment we need to map
bands (diagonal strips) to rectangular grids in memory. This requires a change of coordinates
which maps parallelograms or trapezoids bound by the edges of the dynamic programming table
to (roughly) rectangular regions. Two alternatives were previously discussed. Here, we present a
refined version of the more convenient of the two: coordinates based on shift and distance from
diagonal start cell:

25



Let (x, y) denote coordinates in the dynamic programming table and (d, a) denote the new coordi-
nates where d is the shift x− y and a is the distance along the starting cell of the d-diagonal. The
change of coordinates mapping is given by ϕ : Z2 → Z2:

(x, y)
ϕ−−−→

(
x− y, min(x, y)

)
(
a +max(d, 0), a−min(d, 0)

) ϕ−1
←−− (d, a)

Furthermore, the length of the row at height d in the transformed coordinates is:

L(d) = min(|S| − d, |T |) +min(d, 0) + 1

The alignment band Ω is the subset of the grid that needs to be populated. We have:

Ωxy = {(x, y); dmin ≤ x− y ≤ dmax}

Ωda = {(d, a); dmin ≤ d ≤ dmax}

Dynamic programming dependence rules depend on the sign of d:

26



For simplicity, we populate the dynamic programming table in the natural order of (x, y)-coordinates
(while memory is mapped in (d, a)-system). To avoid sweeping the entire (x, y)-grid for in-band
cells we use the following bounds:

∀(x, y) ∈ Ω : max(0, dmin) ≤ x ≤ min(|S|, |T | + dmax)

∀(x, y) ∈ Ω : max(0, x− dmax) ≤ y ≤ min(|T |, x− dmin)

References

[1] S. Koren, M. C. Schatz, B. P. Walenz, J. Martin, J. T. Howard, G. Ganapathy, Z. Wang, D. A.
Rasko, W. R. McCombie, E. D. Jarvis, and A. M. Phillippy, “Hybrid error correction and de
novo assembly of single-molecule sequencing reads,” Nat Biotech, vol. 30, no. 7, pp. 693–700,
2012. DOI: 10.1038/nbt.2280.

[2] C.-S. Chin, D. H. Alexander, P. Marks, A. A. Klammer, J. Drake, C. Heiner, A. Clum, A.
Copeland, J. Huddleston, E. E. Eichler, S. W. Turner, and J. Korlach, “Nonhybrid, finished
microbial genome assemblies from long-read smrt sequencing data,” Nat Meth, vol. 10, no. 6,
pp. 563–569, 2013, Article.

[3] K. Berlin, S. Koren, C.-S. Chin, J. P. Drake, J. M. Landolin, and A. M. Phillippy, “Assembling
large genomes with single-molecule sequencing and locality-sensitive hashing,” Nat Biotech, vol.
33, no. 6, pp. 623–630, 2015, Research.

[4] C. Ye and S. Ma, “Sparc: A sparsity-based consensus algorithm for long erroneous sequencing
reads,” PeerJ PrePrints, Tech. Rep., 2015.

27

http://dx.doi.org/10.1038/nbt.2280


[5] H. Li and R. Durbin, “Fast and accurate short read alignment with burrows–wheeler trans-
form,” Bioinformatics, vol. 25, no. 14, pp. 1754–1760, 2009.

[6] M. J. Chaisson and G. Tesler, “Mapping single molecule sequencing reads using basic local
alignment with successive refinement (blasr): Application and theory,” BMC bioinformatics,
vol. 13, no. 1, p. 238, 2012.

[7] C. Notredame, D. G. Higgins, and J. Heringa, “T-coffee: A novel method for fast and accurate
multiple sequence alignment,” Journal of molecular biology, vol. 302, no. 1, pp. 205–217, 2000.

[8] C. Lee, C. Grasso, and M. F. Sharlow, “Multiple sequence alignment using partial order graphs,”
Bioinformatics, vol. 18, no. 3, pp. 452–464, 2002.

[9] C. Grasso and C. Lee, “Combining partial order alignment and progressive multiple sequence
alignment increases alignment speed and scalability to very large alignment problems,” Bioin-
formatics, vol. 20, no. 10, pp. 1546–1556, 2004.

[10] M. Brudno, M. Chapman, B. Göttgens, S. Batzoglou, and B. Morgenstern, “Fast and sensitive
multiple alignment of large genomic sequences,” BMC bioinformatics, vol. 4, no. 1, p. 66, 2003.

[11] L. Noé and G. Kucherov, “Improved hit criteria for dna local alignment,” BMC bioinformatics,
vol. 5, no. 1, p. 149, 2004.

[12] W. Feller, An introduction to probability theory and its applications, ser. Wiley series in prob-
ability and mathematical statistics: Probability and mathematical statistics. Wiley, 1971.

[13] S. Aki, H. Kuboki, and K. Hirano, “On discrete distributions of order k,” Annals of the Institute
of Statistical Mathematics, vol. 36, no. 1, pp. 431–440, 1984.

[14] A. N. Philippou, C. Georghiou, and G. N. Philippou, “A generalized geometric distribution
and some of its properties,” Statistics & Probability Letters, vol. 1, no. 4, pp. 171–175, 1983.

[15] M. J. Barry and A. J. L. Bello, “The moment generating function of the geometric distribution
of order k,” The Fibonacci Quarterly, vol. 31, pp. 178–180, 1993.

28


	Background
	Terminology and scope
	Overlap discovery algorithm
	Results and discussion
	Future directions
	Appendices

