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Abstract

Historically the first method to explicitly seek a resampling based estimation of bias and variance

of an arbitrary estimator was one put forward in the 1950s by Quenouille for which the term jackknife

was coined a few years later by Tukey. Thereafter there has been extensive study of similar methods,

the most well known among which is Efron’s bootstrap. The ideas generalize readily (or easily) to other

measures of error (e.g prediction error) and also to more complicated situations (e.g regression analysis

and model selection) leading to a family of assessment methods arising and taking advantage from the

age of cheap and fast computation power. Here we introduce the basic ideas behind the bootstrap, the

jackknife, a few flavors of both, a neat relationship between them shown by Efron, along with some real

examples of their behavior.

1 Introduction

We consider the problem of estimating some aspect t of an unknown probability distribution F from a set

X of samples drawn i.i.d from the distribution:

x1, x2, . . . , xn ∼ F

The observed probability distribution resulting from the samples is one that puts 1
n

weight over any

observed value, and in the literature is referred to by empirical probability distribution and is denoted by

F̂ . F̂ is obviously a discrete probability distribution defined by observed frequencies:

f̂k =
#(xi = k)

n

We will refer to the estimator of t(F ) as s(F̂ ). The first problem to consider right here would be that

considering observations to be independent samples of F implies that we are discarding any temporal

information lying in the observed samples. We confine ourselves to the case where we can assume so and

hence no information is lost by building the estimator as a function that operates on F̂ . The most trivial

choice for s(F̂ ) would be t(F̂ ) which in the literature is referred to by the plug-in estimator. Plug-in

estimators although not often the best choice, have two favorable features. First obviously is their sim-

plicity, and second is the fact that they usually have low bias compared to their variance [4] and thus a
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low bias
standard error

a feature that makes the estimator more reliable. For most cases within this review we

consider only plug-in estimators.

Once an estimator is defined, or more than one estimators are available and one wants to compare

their performance, resampling methods address the problem of estimating different error measures of the

estimator, the most common among which are bias and variance. They define a new hypothetical problem

in which the input space is limited to those values of x observed through X and the distribution over

the input space is assumed to be F̂ , which in the original problem is unknown. They then simulate the

observation-estimation process for a number of iterations, where in each iteration a number of samples are

drawn from F̂ , and a new estimation instance is generated. The (now computable) bias or variance (or any

other error measure) of the estimator is then used as an estimate of the actual bias or variance of s(F̂ ).

Although the bootstrap provides a more general platform to define and analyze other preceding meth-

ods, we will follow the historic order of events as in [3]. We first introduce the jackknife and the way it

was regarded when it was first introduced in the 1950s. Then we consider the bootstrap, and look at the

jackknife through the vantage point introduced by Efron.

2 Influence curves and linear expansion of statistal functionals

Influence curves were introduced in the context of robust statistics. As mentioned in [7] they can be

regarded as first order derivatives of statistical functionals, and for any specific distribution result in a

function over the same domain as that of the the probability distribution. We denote the space of all real

functions over some domain X by F, of which the space of all probability distributions is a subset. For any

functional t defined over F, the influence curve of t at F ∈ F is defined by the following:

ICt : F× Rp → R

ICt(F, x) = lim
ǫ↓0

t((1− ǫ)F + ǫδx)− t(F )

ǫ
(1)

where δx is the degenerate distribution at x. Essentially Fǫ = t((1 − ǫ)F + ǫδx) is a new probability

distribution resulted by contamination of the distribution F at x by the amount ǫ (it is easy to check

the probability distribution properties of this new function). To see the first order derivative behavior of

IC(F, .) we note that F and t are defined as:

F : Rp → R

t : F → R

and that in this sense t(F ) is a function defined over an infinite dimensional space F, in which the gen-

eralization of the gradient vector would be a infinite dimensional vector with its entries being the rate

of change over infinitesimally small variations in each dimension. Each dimension of F being the value

any F assigns to any of samples x ∈ X , it would be obvious that infinitesimal variations of F could be
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built through ǫδx. The rest of the mathematical manipulation of the contaminated expression resulting in

t((1− ǫ)F + ǫδx) is to ensure that the resulting function is itself a probability distribution.

Analysis of the influence curve and proving bounds such as gross-error-sensitivity [7]:

γ∗ = sup
x

|IC(., x)|

or asymptotic variance of t(.):

EF [

∫

IC2(F, x)dx]

fall in the domain of statistic robustness. We here focus on the von Mises expansion of an estimator, which

is crucial in understanding and derivation of resampling based estimates of estimator error measures.

2.1 von Mises expansion

We follow the derivation of [5] for a series expansion of t(F ). We first note that all these derivations for t

could be translated to expansions of s(F̂ ), since the two function are similar functions in nature. For two

probability distributions G1, G2 ∈ F and for some functional t, we define the function:

AG1,G2,t : R → R

AG1,G2,t(κ) = t(κG1 + (1− κ)G2)

which, for simplicity, we will just refer to as A(κ). Under regularity conditions on t one can ensure that A

is analytical around zero, and has a Taylor expansion around zero at 1. Thus we will have:

A(1) ≃ A(0) +A(1)|κ=0

For deriving the first order derivative of A we have the following by definition:

A(1)(κ) = lim
ǫ→0

A(κ+ ǫ)−A(κ)

ǫ

using a rearrangement for A(κ):

A(κ) = t(κG1 + (1− κ)G2) = t(G2 + κ(G1 −G2))

the first order derivative would be:

A(1)(κ)|κ=0 = lim
ǫ→0

A(κ+ ǫ)−A(κ)

ǫ
= lim

ǫ→0

[

t[G2 + (κ+ ǫ)(G1 −G2)]− t[G2 + κ(G1 −G2))]

ǫ

]

[setting κ to zero] = lim
ǫ→0

t[G2 + ǫ(G1 −G2)]− t(G2)

ǫ
= lim

ǫ→0

t(ǫG1 + (1− ǫ)G2)− t(G2))

ǫ

We keep the result we have got here, and consider the case of applying the expansion to estimating t(F ) by

t(F̂ ) which is the case of using the plug-in principle. For A(κ) = A
F̂ ,F,t

since A(1) = t(F̂ ) and A(0) = t(F )

we get:

t(F̂ ) ≃ t(F ) +A(1)|κ=0
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Now we notice that for any empirical probability distribution F̂ defined from frequencies of the observations

x1, x2, . . . , xn we have:

F̂ =
1

n

n
∑

i=1

δxi

and hence the first order derivative derived above could be rewritten as:

A(1)|κ0
= lim

ǫ→0

t((1− ǫ)F + ǫF̂ )− t(F ))

ǫ
= lim

ǫ→0

t((1− ǫ)F + ǫ 1
n

∑n
i=1 δxi

)− t(F ))

ǫ

Comparing this with the influence curve IC(F, x) definition we notice that the above formulation is essen-

tially the same, expect for the fact that ǫδx is replaced by 1
n

∑n
i=1 δxi

. We remember the way IC(., .) can

be regarded as an infinite dimensional gradient vector of t(F ) over all dimensions of F, since

t(.) : F → R

IC(., .) : F → F

In that sense A(1)|κ0
can be regarded as a directional derivative, where the direction is this member of

F:

u =
1

n

n
∑

i=1

δxi

Using the chain rule (again assuming regularity conditions allowing us to do so) we would get:

A(1)|κ0
= lim

ǫ→0

t((1− ǫ)F + u)− t(F ))

ǫ
=

∂t(F )

∂u
=

1

n

n
∑

i=1

∂t(F )

∂δxi

=
1

n

n
∑

i=1

IC(F, xi) (2)

And thus we have derived the linear von Mises expansion for the plug-in principle:

t(F̂ ) ≃ t(F ) +
1

n

n
∑

i=1

IC(F, xi)

where xis are the observed samples.

3 Derivation of the jackknife

The following bias-corrected estimator was first introduced by Quenouille in [9]:

3.1 The jackknife estimate of bias

From the linear expansion:

t(F̂ ) ≃ t(F ) +
1

n

n
∑

i=1

IC(F, xi)

one can think of improving the plug-in estimator by adding the second term on the right hand side of the

above formulation to the estimate t(F̂ ). The way jackknife performs this is first to approximate the terms
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IC(F, xi) by using F̂ as an estimate of F and then estimating the derivative formulation of (1) by setting

ǫ = −1
n−1 instead of taking ǫ to its limit at zero. Thus for each term IC(F, xi) we will have:

ICt(F̂ , x) ≃
t
[

(1 + 1
n−1)F̂ − 1

n−1δx

]

− t(F̂ )

−1
n−1

= (n − 1)

[

t(F̂ )− t

[

(1 +
1

n− 1
)F̂ −

1

n− 1
δx

]]

Investigation of the term (1+ 1
n−1)F − 1

n−1δx shows that it is the normalized frequency distribution of the

sample set resulting from putting aside the i-th observation in the original sample set. In the literature

this is referred to as the i-th jackknife sample and the resulting functional value t[(1 + 1
n−1)F + 1

n−1δx] is

denoted by t(i). The resulting jackknife estimate of bias would be:

E[t(F̂ )]− t(F ) ≃ B̂IASjack = (n − 1)(t̂ − t(.))

where t̂ = t(F̂ ) and t(.) =
1
n

∑n
i=1 t(i). And the resulting bias-corrected jackknife estimator would be:

sjack(F̂ ) = nt̂− (n− 1)t(.)

It is easy to see that the jackknife is reducing the leading term of the bias by a power of n, meaning that

the bias of the above estimator will be of the following form [8]:

E[sjack] = t(F ) +Op(
1

n2
)

Although in order to derive this we used a couple of seemingly random approximations, [3] argues and

proves that B̂IASjack is an unbiased estimator of E[t(F̂ )]− t(F ).

3.2 The jackknife estimate of variance

In [11] Tukey suggested the use of the statistics t(i) introduced by Quenouille for estimating the variance

of a functional:

EF [t(F̂ )− EF t(F̂ )]]2

resulting from multiple sampling of the original probability distribution, hence the subscript F in the

expectation. What Tukey suggested was:

EF [t(F̂ )− EF t(F̂ )]] ≃ V̂ ARjack =
n− 1

n

n
∑

i=1

(t̂(i) − t̂(.))
2

This can be regarded as n − 1 times the variance of sample variance of the jackknife samples. The need

for such an inflation factor (by which [4] refers to the n − 1 term) is that the jackknife samples are very

similar to the original sample. Checking various functionals such as mean and variance suggests a term of

such form being used, but one should remember that the choice of exactly n− 1 is a “somewhat arbitrary

convention in the literature” [4]. Later on, with the introduction of the bootstrap a theoretical justifica-

tion of this variance estimate can be made, being a quadratic approximation of the bootstrap estimate of

variance. But as mentioned in [8] and in chapter 3 of [3], there are various situations disverifying Tukey’s
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variance estimate.

Here we mention a derivation of a variation of the jackknife estimate of variance from [4]. We go back

again to the linear expansion of our statistical functional we used to derive the jackknife estimate of bias:

t(F̂ ) ≃ t(F ) +
1

n

n
∑

i=1

IC(F, xi)

It follows that:

varF t(F̂ ) =
1

n
varF IC(F, x) =

1

n
EF [IC

2(F, x)] (3)

where the last expression results from the fact that EF [IC(F, x)] = 0 [4]. Again using the same approx-

imation of IC(., .) as the one we used for the bias estimate, we set ǫ = −1
n−1 in (1) and we will get the

following approximation:

1

n
EF [IC

2(F, x)] ≃

(

n− 1

n

)2 n
∑

i=1

(t̂(i) − t̂(.))
2

This is not exactly the same as the the original jackknife estimate of Tukey, but is a very similar one and

as mentioned before about the choice of the inflation factor (which here is
(

n−1
n

)

(n − 1) instead of just

n− 1) could be regarded as equally justifiable.

4 The bootstrap

We start with the bias estimate of the bootstrap to demonstrate its mathematical foundation. The bias of

a symmetrically defined functional s(F̂ ) (symmetric over x1, x2, . . . , xn) is defined by:

EF [s(F̂ )]− t(F )

More precisely if we denote different empirical distributions that can arise from F by F ∗, we can write:

EF [s(F̂ )] =

∫

F

p(F ∗)s(F ∗)dF ∗

The basic idea behind the bootstrap is that since F is unknown, as an approximation to the above method,

we plug in F̂ instead of F in whatever approximation we are going to perform. First we derive F ∗ from the

observed empirical distribution F̂ (instead of the actual unknown distribution), and act like F̂ is the actual

underlying distribution. The independent samples taken i.i.d with replacement from the {x1, x2, . . . , xn}

giving rise to F̂ ∗s are referred to in the literature by bootstrap samples. This being said we can rewrite the

above as the following:

EF [s(F̂ )] ≃

∫

F̂

p(F̂ ∗)s(F̂ ∗)dF̂ ∗

The above integral is then computed by a Monte Carlo simulation, by a finite number B of bootstrap

samples.
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If we refer to the original sample by X = {x1, x2, · · · , xn}, the bootstrap starts with generating B inde-

pendent random samples, each consisting of n random observations selected at random with replacement

from X, namely X∗1 ,X∗2 , · · · ,X∗B . Then the following approximations are used to estimate the bias:

t̂∗
.

B =
1

B

B
∑

b=1

s(X∗b) ≃

∫

F̂

p(F̂ ∗)s(F̂ ∗)dF̂ ∗ ≃

∫

F

p(F ∗)s(F ∗)dF ∗ (4)

s(F̂ ) ≃ t(F )

and hence:

B̂IASboot = t̂∗
.

B − s(F̂ ) ≃ EF [s(F̂ )]− t(F )

The rationale behind the bootstrap is pretty straightforward. If we put aside the facts that X probably

has members not showing up in X and the fact that even on the ones in X, the probability distribution is

not necessarily the one we assumed (F̂ ), one can easily see why the bootstrap converges to the exact bias

value for large enough B. In other words, assuming that X and F do not have any hidden tricks up their

sleeves (namely information about F ), the second ≃ in (4) can be replaced by =, and the first one can be

replaced by asymptotic equality:

t̂∗
.

B =
1

B

B
∑

b=1

s(X∗b) ≈

∫

F̂

p(F̂ ∗)s(F̂ ∗)dF̂ ∗ =

∫

F

p(F ∗)s(F ∗)dF ∗

or equivalently:

lim
B→∞

t̂∗
.

B = EF [s(F̂ )]

(notice the expectation being on F instead of F̂ , which is made possible through the above assumptions).

To justify the above assumptions we notice that F̂ is the nonparametric maximum likelihood estimator

of F (and also asymptotically exact letting n → ∞) and regarding the bootstrap as the most available

knowledge from the observation X justifies the bootstrap as being the asymptotically optimum choice. So

the remaining error caused by the mentioned assumptions is not something we could get rid of, as in any

other estimation problem. This is essentially how we are going to look at the bootstrap as do [3] and [4].

In the next section when we introduce the viewpoint of resampling probability distributions, we introduce

a faster converging bootstrap bias estimation according to [4] which only applies to plug-in estimators.

We follow the exact same scheme to derive the bootstrap variance. The same argument as made above

can be made to justify the performance of the bootstrap in this case. The variance of the estimator s(F̂ ) is

varF s(F̂ ) and is approximated by var
F̂
s(F̂ ∗) which with the same arguments as we used for the estimated

bias can be performed by the following Monte Carlo estimation:

varF s(F̂ ) ≃ V̂ ARboot =
1

B − 1

B
∑

b=1

(t∗
b

− t∗
.

B)
2

where t∗
b

= s(F̂ ∗
b
).
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4.1 Immediate extension to more general problems

First we look at the application of the bootstrap to a parametric setting. Assuming, for instance, a normal

distribution family for F̂ we would build the maximum likelihood F̂ in a trivial way as we did previously

for our nonparametric maximum likelihood estimation. Now looking for example at the problem of bias

estimation for this case, it can be seen that nothing essentially changes in 4 except for the fact that F̂ is

now the parametric maximum likelihood estimator of F and hence the bootstrap samples are derived from

such distribution.

Efron in [3] argues that one can regard Fisher’s method assessing a maximum likelihood estimator as a

bootstrap method. A detailed discussion of the relationship of the two can be found in chapter 21 of [4],

which would fall out of the concern of this paper.

This gets us to look at a fundamental feature of the bootstrap. We follow Efron’s argument in [3] for this

matter. The nature of s(F̂ ) and the functional t(F ) it is estimating has nothing to do with the rationale of

the bootstrap (the same holds for the jackknife). Furthermore, as we saw in the derivation of the variance

estimate, there is nothing essentially different for the statistical aspect of s(F̂ ) being the expectation or

the variance or even any other aspect of the functional s. Under all these variations the bootstrap will

follow the same flow of computation as we have demonstrated, while the same justifications hold for its

viability (this does not hold for the jackknife). In any case the bootstrap is using F̂ as the (parametric

or nonparametric) maximum likelihood estimator of F and then computing the desired statistical aspect

through a Monte Carlo approximation with finite B. We will get back to this feature later on when

discussing prediction errors.

5 Another viewpoint: Resampling probability distribution

We now consider a simple representation of the bootstrap process. For every bootstrap iteration one can

look at the frequencies of the observed x∗i and build a probability distribution which we are going to refer

to by P
∗b , which is defined in essentially the same way we defined F̂ in the first place. We denote F̂ by P

0

which is a uniform 1
n
distribution. We notice that in this sense, we are fixing the originally observed xis,

and regard them as “all the possible“ choices or equivalently “all the members of X that we have proof of

existence”. We now build all possible distributions (or some of them in the real world case were we can

afford a finite number of bootstrap samples), and investigate the behavior of s according to those.

All the P
∗s lie on an n-dimensional simplex we would call ϕn, which is defined by:

ϕn = {P∗ : P ∗
i ≥ 0,

n
∑

i=1

P ∗
i = 1}

It is easy to check that since the P
∗s are just normalized frequency vectors, any statistical function will

translate into a pretty similar function of P∗. For example a functional that is linear in the sense that it

does not make any use of cross terms of xis and can be represented exactly using at most 1st order terms
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of its von Mises expansion:

t(F̂ ) = t(F ) +
1

n

n
∑

i=1

IC(F, xi)

would simply translate to a function over P∗:

t(P∗) = t(P0) + (P∗ −P
0)U (5)

where the vector U is simply the vector consisting of IC(F, xi) s.

Similarly one can derive an equivalent form for the case where the functional is a quadratic function of F ,

which means it involves only double cross terms in its formulation:

t(P∗) = t(P0) + (P∗ −P
0)U+

1

2
(P∗ −P

0)TV(P∗ −P
0) (6)

To estimate the bias and variance of the estimator we would be interested in the probability distribution

over ϕn. It can be easily seen that the unnormalized frequency vectors nP∗ come from a multinomial

distribution which will result in the following expression for the probability distribution over ϕn:

P
∗ ∼

∗
(P0,

I

n2
−

P
0T
P

0

n
)

In [3] it is insisted that we use a ∗ under the probability relation, to show that this distribution is produced

by the statistician and not by uncertainty from nature.

From the above representation of the resampling scheme, one can see that the bootstrap tries to cover the

whole simplex as B → ∞ and the jackknife only checks the n mid-edge members of the simplex, that are

all of the form:

P(i) =

(

1

n− 1
,

1

n− 1
, . . . , 0,

1

n− 1
, . . . ,

1

n− 1

)

Two facts can already been noticed. First that the jackknife is an approximation of the bootstrap by

selecting only n specific members of ϕn to find a statistical aspect of the functional s(P∗) over ϕn. Second

that the jackknife samples are on average closer to P
0 than the average bootstrap samples. In the following

section we provide a proof for the exact relationship of the bootstrap and the jackknife.

In [4] a faster converging bootstrap estimate is introduced. If we denote the respective probability

distributions of the bootstrap samples by P
∗1 ,P∗2 , . . . ,P∗B , we define:

P =
1

B

B
∑

b=1

P
∗b

The only modification to the bootstrap bias estimate we derived earlier on, is to use s(P) instead of

s(P0) = s(F̂ ) as an approximation to t(F ):

BIASboot = t̂∗
.

B − s(P)

Essentially both BIASboot and B̂IASboot converge to the ideal bootstrap estimate, but [4] shows and argues

why the former converges faster.
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6 The relationship between the bootstrap and the jackknife

Now we have developed all the tools to compare the bootstrap and the jackknife and see how they are

related. We first look again at the linear approximation of (2). The asymptotic bootstrap estimation

(B → ∞) of the bias directly estimates

EF t(F̂ )− t(F )

by

E
F̂
t(F̂ ∗)− t(F̂ )

The jackknife estimate of bias on the other hand uses (2) and then approximates the terms IC(F, xi) by

IC(F̂ , xi) and then approximating these terms again by setting ǫ = −1
n−1 instead of taking the limit in

(1). In this sense the jackknife is roughly a linear approximation of the bootstrap. This fact is further

elaborated in the next sections using the bootstrap sample probability distributions.

For the case of variance of the plug-in estimator we go back to (3) and notice that the ideal (asymptotic)

bootstrap estimates the left hand side directly, while the jackknife estimates the right hand side using the

same approximation scheme it uses for estimating the bias. This fact is again further elaborated in the

following section.

6.1 The jackknife approximation of the bootstrap variance estimate

Efron proves a neat relationship between the jackknife and the bootstrap estimations of variance, using

the resampling distributions we discussed before. We remember that the bootstrap sampling induces a

probability distribution which is n times multinomial distribution over the simplex ϕn.The functional t on

the other hand builds a surface on the simplex, consisting of points 〈P∗, t(P∗)〉 for all P∗ ∈ ϕn.

The ideal bootstrap estimator of variance would compute the variance of t(P∗) according to this distri-

bution over the surface described above, by a finite number of samples from the surface. The jackknife on

the other hand estimates the variance by just looking at n values being t(P(i). We can see that through the

points 〈P(i), t(P(i))〉 passes a hyperplane which can be regarded as a linear estimate of the actual 〈P∗, t(P∗)〉

surface. Technically speaking, referring to the linear hyperplane defined by the jackknife samples by tLIN

surface, we can use (5) to formulate the values over tLIN (since this would be a linear functional):

t(P∗) ≃ tLIN(P∗) = c0 + (P∗ −P
0)U

and hence:

var∗tLIN (P∗) = var∗[c0 + (P∗ −P
0)U] = var∗[(P

∗ −P
0)U]

= var∗P
∗
U = U

T (var∗P
∗)U =

1

n2
U

T
U

where the * as the subscript of variance means the variance over the simplex ϕn and over the distribution:

P
∗ ∼

∗

(

P
0,

I

n
−

P
0T
P

0

n2

)

10



and the last expression in the computation above results from the covariance matrix above. Now we notice

that since tLIN is the hyperplane passing through jackknife samples, the values of the entries in U are the

jackknife estimates of IC(F, xi) which are as we mentioned earlier:

(n − 1)(t̂(.) − t(i))

and hence we have proven that:

var∗tLIN (P∗) =
n− 1

n
V̂ ARjack

which means that the jackknife estimate for variance is roughly (for the term n−1
n

) equal to a linear

approximation of the bootstrap estimate of variance.

6.2 The jackknife approximation of the bootstrap bias estimate

In the case of bias estimation, if we look at the same hyperplane we defined in the previous section both

E∗tLIN (P∗) − t(P0) and the jackknife estimate of bias would be zero. In this case jackknife would be an

exact estimate of the bootstrap. We now look at a more complicated surface which is approximately the

surface defined by 〈P∗, t(P∗)〉. We look at the quadratic surface passing through the jackknife samples

〈P(i), t(P(i))〉 and 〈P0, t(P0)〉. For this surface which we will refer to as tQUAD one can write (6):

tQUAD(P
∗) = c0 + (P∗ −P

0)U+
1

2
(P∗ −P

0)TV(P∗ −P
0)

where the contents of U are the same as before: estimates of IC(F̂ , xi) and the contents of the matrix V

would similarly be estimates of the second order influence curves at (F, xi, xj) which would be an obvious

extension of the definition in (1):

lim
ǫ→0

IC((1− ǫ)F + ǫδxj
), xi)− IC(F, xi)

ǫ

We here shorten the flow of computation since it is quite similar to the one we did in the previous section.

The quadratic approximation of the bootstrap estimate of bias would be:

E∗tQUAD(P
∗)− tQUAD(P

0) =
1

2
tr(

I

n
−

P
0T
P

0

n2
) =

tr(V)

2n2

On the other hand the jackknife estimate of bias is:

(n− 1)(t̂(.) − t̂)

which can be found by (n− 1) times the average of:

t̂(i) − t̂ = t̂(P(i))− t(P0) = t̂QUAD(P(i))− tQUAD(P
0)

which yields to
n
∑

i=1

(P(i) −P
0)U+

1

2

n
∑

i=1

(P(i) −P
0)TV(P(i) −P

0)
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which can easily be seen to cancel out to tr(V)
2n(n−1) . Thus we just proved that:

E∗tQUAD(P
∗)− tQUAD(P

0) =

(

n− 1

n

)

B̂IASjack

which implies that the jackknife estimate of bias is roughly (for the factor of n−1
n

) the bootstrap estimate

of bias over a quadratic approximation of the surface of the functional.

7 Prediction error estimation

We consider the problem where based on a set of observations X = x1, . . . , xn of the form:

(t1, y1), (t2, y2), . . . , (tn, yn)

one wants to assess the behavior of a predictor ηX , which for an unseen (test) sample t0 predicts:

y0 = ηX(t0)

In chapter 5 of [3], Efron proposes a two-sample bootstrapping scheme for a regression analysis, which we

do not mention here. Here, on the other hand, we are concerned with the estimation of statistical aspects

of a random predictor ηX , for which we consider the observations xi to be the concatenation of the actual

observation (ti) with the attached label (yi) and perform the one-sample resampling scheme that we have

been discussing.

For the case where y values are either 0 or 1, a trivial error function Q[y0, η(t0)] can be defined. As before

we would fix the observations X and limit our statistical analysis to different possible test cases. In this

sense we would have:

x0 = (t0, y0) ∼ F

for the actual samples that would be given to the predictor and

x0 = (t0, y0) ∼
∗
F̂

for the bootstrapping process that we will perform to assess the behavior of the predictor.

We now go back to the general bootstrap formulation we defined before, and build the functional to be

statistically assessed as follows:

R(X,F ) = EFQ[y0, ηX(t0)]− E
F̂
Q[y0, ηX(t0)]

This functional is referred to by the expected excess error which is the difference between the apparent

error E
F̂
Q[y0, ηX(t0)] and the unknown actual error (the same expectation, but over F instead of F̂ ).

Since F̂ is a the probability distribution arising from a normalized frequencies summary, the second term

in the above formulation of R(X,F ) would be:

E
F̂
Q[y0, ηX(t0)] =

1

n

n
∑

i=1

Q[yi, ηX(ti)]

12



Using the “plug in F̂ for F” motto we mentioned earlier, the bootstrap estimate of the expected excess

error would be:

R∗ = E
F̂
Q[y0, ηX∗(t0)]− E

F̂ ∗
Q[y0, ηX∗(t0)]

where the bootstrap samples are defined as before by random sampling with replacement from X resulting

in

X∗b = {x∗
b

1 , x∗
b

2 , . . . , x∗
b

n }

notice that in the first term of the bootstrap approximation above, the predictor which is used is also ηX∗

which means the predictor build from the bootstrap sample is assessed over all X and then averaged to

get the pseudo-actual value of error. Denoting these different predictors by:

η∗b = η
X∗

b

and referring to the expected excess error by EEE we will get:

ÊEEboot = E∗

[

n
∑

i=1

(P0
i −P

∗
i )Q[yi, η

∗(ti)]

]

where the expectation E∗ is taken over the distribution:

P
∗ ∼

∗
(P0,

I

n2
−

P
0T
P

0

n
)

Similarly for the jackknife we could reduce the computations of the bootstrap by using:

ÊEEjack = (n− 1)R(.) =

(

n− 1

n

) n
∑

i=1

R(P(i))

In [3] an expansion of the above jackknife estimate of expected excess error, and a comparison with the

cross validation estimate is presented. A conjecture about the two being asymptotically equal is presented

there as well, a proof of which was later provided in [6].

8 Experimental Results

We demonstrate the performance of the bootstrap and the jackknife in two situations. We have produced

a sample of 100 observations, each a member of R3 in the following manner:

X = x1, x2, · · · , x100

xi1 ∼ N (10, 1)

xi2 ∼ N (2, 1)

xi3 ∼ N (5, 1)

and we compare the performance of the jackknife and the bootstrap for the plug-in estimator of two

different functionals

t1 =
xi1

3

xi2
2 + xi3

3
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Figure 1: convergence to -4.65 of the bootstrap estimate for bias for t1, the jackknife estimate of bias was 0.0067

and

t2 =
xi1

xi2

Obviously the first one is further from being a linear functional and we will see how the jackknife is less

reliable in the first case. Figures 1 and 2 depict the convergence of the bootstrap for t1 over 1000 iterations.

It can be seen that something around 200 samples would have been enough to get a reasonable estimate

in both cases. Figures 3 and 4 depict the convergence of the bootstrap for t2.

9 Conclusion and some notes

We have introduced the foundations of bootstrap as a computationally intensive statistical method. The

jackknife that predate the bootstrap can be regarded in the bootstrap framework as a lighter version which

produces an approximation of the actual bootstrap estimate. As can be seen from the results of section 6,

the reliability of the jackknife highly depends on the functional to be assessed being close to linear or not.

In the latter case the jackknife might produce highly erronous results, the reasons of which have already

been discussed.

Before the rise of the bootstrap different flavors of the jackknife were produced and analyzed, the most

important of which are the infinitesimal jackknife introduced by Jaeckel which in a nutshell can be regarded

as a more accurate jackknife. In the influence curve based derivation we used for the jackknife, the

infinitesimal jackknife takes ǫ to 0 instead of using ǫ −1
n−1 (as in the original jackknife) to approximate the

influence curve value. In the context of the approximating surfaces discussed in section 6, the infinitesimal

jackknife is the approximation of the functional on the tangent surface to the t surface at P
0. Further
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Figure 2: convergence to 0.17 of the bootstrap estimate for variance for t1, the jackknife estimate of variance was

0.08

0 100 200 300 400 500 600 700 800 900 1000
−0.48

−0.46

−0.44

−0.42

−0.4

−0.38

−0.36

−0.34

−0.32

−0.3

number of bootstrap iterations

b
o

o
ts

tr
a

p
 e

s
ti
m

a
te

 o
f 

b
ia

s

Figure 3: convergence to -0.44 of the bootstrap estimate for bias for t2, the jackknife estimate of bias was 0.0004
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Figure 4: convergence to 0.02 of the bootstrap estimate for variance for t2, the jackknife estimate of variance was

0.0007

discussions about the infinitesimal jackknife can be found in [8], [3], and [4].

Miller who has a rigorous study of the jackknife [8] introduced an amendment to the jackknife which he

referred to as a more trustworthy jackknife, which essentially was a further correction of the bias estimation

reducing the error order from Op(
1
n2 ) to Op(

1
n3 ). In 1971 [10] introduced a new method of bias correction

which used two biased estimators s1 and s2 with biases b1 and b2 and introduced ŝ = s1−Rs2
1−R

where R = b1
b2

as a bias corrected estimator, and argued that this outperforms Miller’s more trustworthy jackknife.

[12] presents a study of the jackknife and the bootstrap in the regression analysis scenario, which we have

completely skipped here. The basic ideas of the bootstrap were introduced in a couple of papers by Efron

[2] and [1], which were almost entirely summarized in the two books [3] and [4], from which we have almost

followed the choice of notation and proof flows.
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