
Techniques for Inhomogeneous Linear PDEs
Green’s Functions and Generalizations of Duhamel’s Principle

Green’s functions and Duhamel’s principle are both standard techniques for solving inho-

mogenous linear PDEs. Typically the former is presented as a technique for solving boundary

value problems for spatial PDEs (e.g. the Poisson equation) and the latter as one for initial

value evolution PDEs (e.g. the wave or diffusion equations). However, Green’s functions are

also applicable to evolution equations where initial values can be viewed as boundary values

in space-time. In addition, fundamental solutions to evolution equations enjoy a Duhamel-like

property whereby one can ”move” the Dirac delta inhomogeneity to initial conditions. In this

chapter, we begin by presenting general formulations of Duhamel’s principle for linear evolu-

tion equations of arbitrary order as well as fundamental solutions and Green’s functions for

arbitrary linear equations, with special attention given to linear evolution equations. For these

equations we also look at different ways to obtain Green’s functions and discuss how causality is

reflected in the structure of Green’s functions. We then establish a Duhamel-like principle for

finding fundamental solutions for linear evolution operators of arbitrary order, and generalize

this to inhomogeneous evolution equations with space-time distributaional source terms that

are ”time-factorizable”. As another generalization of Duhamel’s principle, we present a spatial

analog for inhomogenous boundary value problems in bounded star domains. Finally, we briefly

discuss convergence methods for obtaining solutions to inhomogeneous linear equations from

sequences of approximate solutions.

Amir Kadivar, March 2019
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5 Convergence methods 23

§ 1 Background

In this section we present our starting point in the familiar form that one encounters in an
introductory study of PDEs. We are concerned with inhomogeneous linear PDEs of the following
varieties:

Lu = f on Ω

u = 0 on ∂Ω
(1)

where Ω ⊂ Rn is a, potentially unbounded, open domain, f is either a function with certain
regularity properties or merely a distribution, and L is a linear partial differential operator:

L =
∑

k

ak (x)Dαk

where Dα refers to multi-index notation for partial differentiation:

α = (α1, . . . , αn), |α| =
n∑
i

αi, Dα =
∂|α|

∂xα1
1 . . . ∂xαn

n

Also of particular interest to us are initial value problems for inhomogeneous linear evolution
equations of the first temporal order (parabolic) and second temporal order (hyperbolic) where
the initial conditions are zero. We note that solutions to an IVP with non-vanishing initial
conditions can be obtained using the principle of superposition.
Definition 1.1. A first order inhomogeneous linear evolution IVP is (∂t − L)u = f for t > 0

u(x, 0) = 0

for some linear partial differential operator L over the space variable x ∈ Ω ⊂ Rn.

Definition 1.2. A second order inhomogeneous linear evolution IVP is
(∂tt − L)u = f for t > 0

u(x, 0) = 0

∂tu(x, 0) = 0

for some linear partial differential operator L over the space variable x ∈ Ω ⊂ Rn.
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In either case Ω is a, potentially bounded, open domain in Rn (“physical” space), and u and
f are functions over space-time Rn × [0,∞). We keep in mind the inhomogeneous diffusion
equation as an important representative for 1.1 and the inhomogeneous wave equation as one
for 1.2.

§ 1.1 Duhamel’s principle for evolution equations

In standard introductory treatment, Duhamel’s principle is presented as a technique to solve
the inhomogeneous diffusion and wave equations. The proof of the principle simply follows from
linearity of the PDE and an application of elementary results in calculus. Here we present the
general form of the standard Duhamel’s principle for arbitary linear evolution equations.

▶ Theorem 1.1 First Order Duhamel’s Principle Concerning problem 1.1, define auxiliary

equations

 (∂t − L)us = 0 for t > s

us(x, s) = f (x, s)
(2)

where s is a time-like parameter varying over (0,∞). If the above family of equations have

solutions us(x, t) then the function

u(x, t) :=
∫ t

0
us(x, t)ds

solves 1.1.

Duhamel’s principle extends readily to higher order evolution equations. Here we prove the
second order case as a template.

▶ Theorem 1.2 Second Order Duhamel’s Principle Consider the set of auxiliary equations for

problem 1.2: 
(∂tt − L)us = 0 for t > s

us(x, s) = 0

∂tu
s(x, s) = f (x, s)

(3)

where s is a time-like parameter varying over (0,∞). If the above family of equations have

solutions us(x, t) then the function

u(x, t) :=
∫ t

0
us(x, t)ds

solves 1.2.
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Proof. We apply the components of the evolution operator ∂tt − L to u separately. For the
spatial component L we simply have:

Lu = L

∫ t

0
us(x, t)ds =

∫ t

0
Lus(x, t)ds

since L only applies to x which is fixed in the integrand. For the temporal component we have

∂tu = ∂t

∫ t

0
us(x, t)ds = ut(x, t) +

∫ t

0
∂tu

s(x, t)ds

by an application of the fundamental theorem of calculus and the total derivative formula. Not-
ing that ut(x, t) = 0 by the imposed initial conditions we can proceed to the second derivative:

∂ttu = ∂t

∫ t

0
∂tu

s(x, t)ds = ∂tut(x, t) +
∫ t

0
∂ttu

s(x, t)ds = f (x, t) +
∫ t

0
∂ttu

s(x, t)ds

Combining this with the spatial component and observing that (∂tt − L)us = 0 for all s < t

completes the proof.

□

The above proof carries over seamlessly to linear evolution equations of arbitrary order
Definition 1.3. Inhomogeneous Linear Evolution Equation of order k is an IVP of the

form  (∂kt − L)u = f for t > 0

∂ltu(x, 0) = 0 for l < k

▶ Theorem 1.3 General Duhamel’s Principle for Linear Evolution Equations Consider the

general inhomogenous linear evolution IVP 1.3. Set the auxiliary equations indexed by s ∈ (0,∞)


(∂kt − L)us = 0 for t > s

∂ltu
s(x, s) = 0 for l < k − 1

∂k−1
t us(x, s) = f (x, s)

(4)

If the above family of equations have solutions us(x, t) then the function

u(x, t) :=
∫ t

0
us(x, t)ds

solves 1.3.
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§ 1.2 Diffusion (heat) kernel

Definition 1.4. The heat kernel Φ : Rn × (0,∞) → R is the function

Φ(x, t) := 1
(4πt)n/2 exp

(
−|x|2

4t

)

The heat kernel has the following standard properties which we will accept without proof.

▶ Theorem 1.4 Properties of the heat kernel

1. For all x ∈ Rn and all t > 0 the heat kernel satisfies (∂t − ∆)Φ(x, t) = 0.
2. As t → 0+ we have Φ(x, t) → δ(x) in the sense of distributions.

3. The solution to the homogeneous diffusion IVP with initial conditions u(x, 0) = g(x) is

given by the convolution integral

u(x, t) =
∫
Rn

Φ(x− y, t)g(y)dy

One also encounters the term fundamental solution for the diffusion equation for the heat kernel.
However, as we shall see, fundamental solutions are a broader concept and this equivalence,
although accurate, is a special property of certain linear evolution equations including the
diffusion equation.

§ 1.3 Fundamental solutions of ∆

Definition 1.5. The fundamental solution of ∆ is defined to be

Φ(x) :=

 1
2π log |x| if n = 2

− wn
4π|x|n−2 if n > 2

for x , 0, where n is the number of space dimensions, wn is a constant equal to the inverse of

the hypersurface area of the unit ball in Rn.

The fundamental solution of ∆ has the following properties.

▶ Theorem 1.5 Properties of the fundamental solution of ∆

1. Φ(x) is harmonic for all x , 0, i.e. ∆Φ(x) = 0.
2. ∆Φ(x) = δ(x) in the sense of distributions.
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3. (Convolution property) A solution to the Poisson equation ∆u = f is given by the convolution

u(x) =
∫
Rn

Φ(x− y)f (y)dy

4. (Representation formula) If u is harmonic everywhere in Ω we have

u(x) =
∫
∂Ω

[
u(y)∂nΦ(x− y) − Φ(x− y)∂nu(y)

]
dSy

for all x ∈ Ω where ∂n is the derivative in the outward normal direction to ∂Ω.

As we shall see in the next section, properties 1 and 2 in theorem 1.5 form the basis for the
definition of fundamental solutions of arbitrary linear differential operators. Property 3 will then
be a simple, yet crucial, consequence of property 2. The representation formula (property 4),
however, is unique to ∆ as it relies on Green’s second identity which does not hold for arbitrary
differential operators. A consequence of the representation formula is our ability to use Green’s
functions to construct solutions for the Dirichlet problem for Laplace’s equation. We will see
that Green’s functions are generally only applicable for solving inhomogeneous equations (for
∆ that would be the Poisson equation ∆u = f). This feat of Green’s functions to help solve
Dirichlet problems for homogeneous PDEs is this a special feature of ∆.

§ 2 Fundamental solutions

In this section we define fundamental solutions for arbitrary linear differential operators and
see how they can be used to solve inhomogeneous PDEs with or without boundary conditions.
Crucial to all these definitions is the notion of the adjoint of a differential operator used to define
distributional derivatives by moving derivatives over to smooth test functions under integrals.
Definition 2.1. Adjoint of an Operator Given a linear partial differential operator

L =
∑

k

ak (x)Dαk

its adjoint is defined to be

L∗ =
∑

k

(−1)|αk|ak (x)Dαk

Clearly, for any L we have (L∗)∗ = L.

Example 2.1 Some adjoint operators

• The adjoint operator for the transport operator ∂t −c∂x is the another transport operator
with the same velocity −(∂t − c∂x).

• The Laplacian ∆ and the wave operator □ = ∂tt − ∆ are self-adjoint.
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• The adjoint of the diffusion operator ∂t − ∆ is the backwards diffusion operator −∂t − ∆.
• For any admissible function f (x) we have Lf (−x) = L∗f (x).

The adjoint operator is defined in such a manner to allow partial distributional derivatives
to coincide with normal derivatives when a distribution is a normal function. For any linear
partial differential operator L, and an appropriately differentiable function u 1, an integration
by parts argument shows that

∀ϕ ∈ C∞
c (Ω) ⟨Lu, ϕ⟩ :=

∫
Ω

Luϕdx =

∫
Ω

uL∗ϕdx =: ⟨u, L∗ϕ⟩

By extension, the distributional application of L on u is defined to be the distribution

ϕ 7→ ⟨Lu, ϕ⟩ := ⟨u, L∗ϕ⟩ :=
∫
Ω

uL∗ϕdx

§ 2.1 Fundamental solutions for linear operators

Definition 2.2. Fundamental Solution Given a linear partial differential operator L over

Ω ∈ Rn, a fundamental solution for L is a parametric family of functions Φy (x), alternatively

denoted elsewhere as Φ(x, y), indexed by a space-like parameter y ranging over the same domain

Ω as x, satisfying LΦy (x) = δy (x) in the sense of distributions, that is

∀ϕ ∈ C∞
c (Ω) : ⟨Φy, L∗ϕ⟩ = ϕ(y)

We say that Φy (x) and δy (x) are “centered” at y and for convenience we write Φ(x) := Φ0(x)

(justfitication to be provided in theorem 2.1).

Remark. Given a differential operator L fundamental solutions are not unique. That is for a
fixed center y there are many functions v(x) satisfying Lv(x) = δy (x). A good (and accurate)
analogy is to think about elementary linear algebra: if L was a matrix and u and f were
vectors, solutions to Lu = f need not be unique. However, if u and v are such that Lu = Lv = f
then by linearity of L difference u − v is in the kernel of L, namely L(u − v) = 0. In our
case, L is a linear transformation on an infinite dimensional vector space, elements of which
are differentiable functions. Therefore, we can not really speak of “the” fundamental solution
but rather “a” fundamental solution which itself is a parametrized family of functions. We
can safely dispense with the pedantry once we show the translation property of fundamental
solutions, that “Φy (x) = Φ0(x− y)” in some sense (see theorem 2.1).

The key observation underlying the utility of fundamental solutions is the fact that for any
1to be exact, u needs to be differentiable to maxk |αk| order where αk are the multi-indices involved in L.
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function f : Ω→ R we have, by definition of the Dirac delta ⟨δy, f⟩ = f (y). Intuititvely, by an
integral version of the superposition principle, we can expect that the function

u(x) =
∫
Ω

Φ
y (x)f (y)dy

satisfies Lu = f in a manner similar to property 3 in theorem theorem 1.5.

We will turn this intuitition in to a proper proof in theorem 2.2. But first, we shall establish
an important property of fundamental solutions, that “Φy (x) = Φ0(x− y)” in some sense.

Consider any L and fix any y. The distributional statement LΦ0(x − y) = δ(x − y) = δy (x)

holds by definition. This means

∀y ∈ Ω, ∀ϕ ∈ C∞
c (Ω) :

∫
Ω

Φ
0(x− y)L∗ϕdx = ϕ(0)

By a change of variables x̃ = x− y and letting ϕ̃(x) = ϕ(x + y) we get∫
Ω

Φ
0(x̃)L∗ϕ̃(x̃)dx̃ = ϕ̃(y)

Therefore we have shown that in the sense of distributions

LΦ0(x− y) = δy = LΦy (x)

We have thus proved the following theorem.

▶ Theorem 2.1 For any linear differential operator L and any family of fundamental solutions

Φy (x) we have

L
(
Φ

0(y − x) − Φy (x)
)
= 0

in the sense of distributions.

Based on this, from now on we will abuse notation and drop the superscript 0 and simply write
LΦ(x − y) = δy (x) keeping in mind that L is a differential operator on x and the statement
holds in the sense of distributions for any fixed y. This simplifies matters since we can now
drop the parametric family of functions Φy and get everything we need from one function
Φ = Φ0, which is commonly referred to, with abuse of terminology, as a (or even worse, the)
fundamental solution. However, we do not mind this too much since referring to Φ without the
index y is justified by the theorem 2.1, and the use of “the” is justified by the fact that distinct
fundamental solutions differ only by a function in the distributional kernel of L.
Remark. In both examples of the previous section, the fundamental solution for ∆ in 1.5
and that of the diffusion operator 1.4 (note that we have not shown that either of those are
fundamental solutions in the above sense), the fundamental solution has an additional property;
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that Φ(x − y) = Φ(y − x) and in fact Φy (x) only depends on |x − y|. This is not in general
true. For instance, take L = ∂x. The fundamental solution is the Heaviside function Φy (x) =

Φ(x−y) = 1x>y which clearly does not satisfy Φ(x−y) = Φ(y−x). In this sense the fundamental
solution of ∆ defined in 1.5 coincides with the general definition of fundamental solutions.

We can show that the symmetry property is reserved for fundamental solutions of self-adjoint
operators, for instance ∆. One might reasonably object that the diffusion operator is not self-
adjoint while the heat kernel 1.4 does enjoy this property. The key here is that x in the heat
kernel is only the spatial component of the domain Ω×[0,∞). In fact, as we shall see, the proper
fundamental solution for the diffusion operator, which we will show to be the zero extension of
the heat kernel to t < 0, does not enjoy this symmetry property in its full space-time domain.

We can now easily prove the most crucial aspect of fundamental solutions, the integral super-
position property:

▶ Theorem 2.2 Let L be any linear differential operator with fundamental solution Φ and let f be

any admissible function. The function

u(x) =
∫
Ω

Φ
y (x)f (y)dy =

∫
Ω

Φ(x− y)f (y)dy

satisfies Lu = f pointwise.

Proof. We wish to compute

Lu(x) = L
∫
Ω

Φ(x− y)f (y)dy

keeping in mind that L is a differential operator acting only on x which only appears under Φ
in the integrand. However, since LΦ has a singularity at x = y we cannot simply move L inside
the integral. Instead we first use the commutative property of convolutions to write

u(x) =
∫
Ω

Φ(y)f (x− y)dy

We can now safely bring L under the integral sign noting that it applies to the variable x for
any fixed value of y. We now note the crucial property that applying L to the composition
x 7→ x − y 7→ f (x − y) is identical to applying L∗ to the composition y 7→ x − y 7→ f (x − y)

(to see why this is true note that for any h we have Lh(x) = L∗h(−x) and use the chain rule).
Symbolically we write

Lxf (x− y) = L∗
yf (x− y)

where by the right hand side we mean L∗ applied to the function y 7→ f (x− y) evaluated at a
specific x, y. We can now move the L∗ back on Φ to get

Lu(x) =
∫
Ω

Φ(y)L∗
yf (x− y)dy = ⟨LΦ0, y 7→ f (x− y)⟩ = f (x)
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□

We have so far shown that the fundamental solution of ∆ defined in 1.5 is the proper fundamental
solution of the ∆ as defined in 2.2 with the adjustment of notation according to theorem 2.1.
But what about the diffusion operator? For a proper fundamental solution for ∂t − ∆ we seek
a function Φy,s(x, t) such that (∂t − ∆)Φy,s = δy,s(x, t). But all we have is the heat kernel 1.4,
defined only for t > 0 and only satisfying the property that as t → 0+ and as a function of x it
tends to δ(x) as a distribution on x. To simplify notation it suffices to find a function Φ̃(x, t)

such that (∂t − ∆)Φ̃ = δ(x, t). We will now use the properties of the heat kernel (theorem 1.4)
to show that its zero extension to all t is the fundamental solution we seek.

▶ Theorem 2.3 The function

Φ̃(x, t) :=


0 if t < 0

1
(4πt)n/2 exp

{
−|x|2

4t

}
if t > 0

is the fundamental solution for the diffusion operator ∂t − ∆ in the sense of 2.2, namely

(∂t − ∆)Φ̃ = δ(x, t)

Proof. For the purpose of this proof we will let Φ be the heat kernel as defined in 1.4, i.e. the
t > 0 side of Φ̃. Furthermore, the proof follows identically if we replace ∆ with any other linear
differential operator on the space variable. So we will write L = ∆ and provide a more general
proof applicable to any first order linear evolution equation.

Pick any test function ϕ ∈ C∞
c (Ω× R), we wish to show

⟨(∂t − L)Φ̃, ϕ⟩ = ϕ(0)

To do this we apply the two components of ∂t − L to Φ̃ separately. First we have

⟨LΦ̃, ϕ⟩ = ⟨Φ̃, L∗ϕ⟩ =
∫ ∞

0

∫
Ω

ΦL∗ϕdxdt

=

∫ ∞

0

∫
Ω

LΦϕdxdt

where in the last step we have used the fact that ϕ has compact support and that LΦ is well
defined and has no singularities in Ω.

For the time derivative we have to manage the fact that ∂tΦ does indeed have a singularity at
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t → 0+ and we need to tread with care in swapping the derivative back on Φ.

⟨∂tΦ̃, ϕ⟩ = −⟨Φ̃, ∂tϕ⟩ = −
∫
Ω

∫ ∞

0
Φ∂tϕdtdx

= − lim
ϵ→0+

∫
Ω

∫ ∞

ϵ

Φ∂tϕdtdx

= − lim
ϵ→0+

∫
Ω

[
Φϕ|∞t=ϵ −

∫ ∞

ϵ
∂tΦϕdt

]
dx

= lim
ϵ→0+

∫
Ω

Φ(x, ϵ)ϕ(x, ϵ)dx + lim
ϵ→0+

∫
Ω

∫ ∞

ϵ

∂tΦϕdtdx

= ϕ(0, 0) +
∫
Ω

∫ ∞

0
∂tΦϕdtdx

where in the last step we have used the property of the heat kernel that as t → 0+ we have
Φ(x, t) → δ(x) in the sense of distributions. Putting the two components back together and
using the fact that Φ satisfies the diffusion equation for all t > 0 completes the proof.

□

Remark. In order to return completely to the proper notation of definition 2.2 for the space-
time operator ∂t − ∆ we should write the fundamental solution of the diffusion equation as

Φ
y,s(x, t) = H (t− s)Φ(x− y, t− s)

where H is the Heaviside function and Φ is the heat kernel 1.4. As such, the integral property
of fundamental solutions (theorem 2.2) gives the solution

u(x, t) =
∫ ∞

0

∫
Ω

Φ
y,s(x, t)f (y, s)dydt =

∫ ∞

0

∫
Ω

H (t− s)Φ(x− y, t− s)f (y, s)dydt (5)

for the unconstrained inhomogeneous diffusion equation (∂t − ∆)u = f . Note however that
this definition satisfies u(x, 0) = 0, namely that our choice of fundamental solution happens to
satisfy the vanishing initial condition that we will eventually want to satisfy.
Remark. Recall that we originally obtained the heat kernel by demanding properties 1 and 2
of theorem 1.4 and then used the Fourier transform. These requirements amount to a distribu-
tional initial value problem in the sense that the initial value is a distribution and its imposition
must be defined in terms of a distributional limit. We then used these very same properties,
amounting to the simplified IVP, in the proof of theorem 2.3 to show that what we obtained
from the distributional homogenous IVP can be used to create a solution for a corresponding
distributional inhomogenous problem (∂t −∆)u = δ(x, t). This process bears more than superfi-
cial resemblence to Duhamel’s principle. In theorem 4.1 we will clarify this connection further
by proving a distributional version of Duhamel’s principle. However, we will see that we need
to restrict the distributional inhomogeneity, here δ(x, t), to a certain class of distributions that
we refer to as “time-factorizable”. We will also see how the above procedure and the standard
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Duhamel’s principle are special cases of this generalized principle.

§ 2.2 A Duhamel-like principle for fundamental solutions of evolution

operators

In the proof of theorem 2.3 we essentially proved the following general result for first order
linear evolution operators.

▶ Theorem 2.4 Fundamental solution for first order linear evolution operators Let L be

a linear differential operator and suppose the function Φ(x, t) : Ω × (0,∞) → R satisfies the

following two properties:

• (∂t − L)Φ = 0 for all x ∈ Ω and all times t > 0.
• As t → 0+ we have Φ(x, t) → δ(x) in the sense of distributions.

Then the function

Φ
y,s(x, t) = H (t− s)Φ(x− y, t− s)

is the fundamental solution of ∂t − L in the sense of definition 2.2 over the space-time domain.

In fact, a slight modification of the same proof can provide the following result for linear
evolution operators of arbitrary order k.

▶ Theorem 2.5 Fundamental solution for general linear evolution operators Let L be a

linear differential operator and suppose the function Φ(x, t) : Ω × (0,∞) → R satisfies the

following two properties:

• (∂kt − L)Φ = 0 for all x ∈ Ω and all times t > 0.
• As t → 0+ we have ∂ltΦ(x, t) → 0 for all l < k − 1.
• As t → 0+ we have ∂k−1

t Φ(x, t) → δ(x)in the sense of distributions.

Then the function

Φ
y,s(x, t) = H (t− s)Φ(x− y, t− s)

is the fundamental solution of ∂k/∂tk −L in the sense of definition 2.2 over the space-time domain.

Example 2.2 Fundamental solution for the 1-D wave operator We can now use
this general recipe to obtain fundamental solutions for the wave operator □ = ∂tt − c2∆.
First by applying the Duhamel-like recipe of theorem 2.5 we reduce the problem to
solving for u(x, t) such that
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
(∂tt − L)u = 0 for x ∈ Ω, t > 0

u(x, t) = 0

∂tu(x, t) → δ(x) as t → 0+

We can now follow the same recipe as the one used to find the heat kernel, for simplicity
we will only consider the case of n = 1 space dimensions. By applying the Fourier
transform to the space variable the requirements above translate to


∂ttû(ω, t) + c2ω2û(w, t) = 0 forall x ∈ Ω, t > 0

û(ω, 0) = 0

û(ω, 0) = 1

which for every fixed ω is an ODE in t that can be readily solved to give

û(ω, t) =
1
cω

sin(cωt) =
1

2cωi
(
eicwt − e−icwt

)
We now know that the inverse Fourier transform of 1/ωi is the Heaviside function H (x)

and that the Fourier inverse of multiplication by eaω is a shift by a. Therefore, we get:

u(x, t) =
1
2c

[H (x + ct) −H (x− ct)] = 1
2c
1|x|<ct

By theorem 2.5 the fundamental solution for the wave operator in one space dimension
is

Φ(x, t) =
1
2c
1|x|<ct

which is, unsurprisingly, what we would have obtained where we to informally apply the
d’Alembert formula to the distributional IVP above.

To fully return to the notation of 2.2, working our way back through the simpler noti-
fication justified by theorem 2.1, we should write the fundamental solution of the 1-D
wave equation as

Φ
y,s(x, t) =

1
2c

[
H

(
x− y + c(t− s)

)
−H

(
(x− y) − c(t− s)

)]
=

1
2c
1|x−y|<c(t−s)

(6)
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§ 3 Green’s functions for evolution equations

Returning to the original boundary value problem (1) we need to find an appropriate member of
the fundamental solutions, namely Green’s functions Gy (x) that satisfy the boundary condition.
Once that condition is satisfied, we can build solutions to the inhomogeneous BVP using the
same integral property of fundamental solutions (theorem 2.2).

Recall that fundamental solutions are never unique but rather a family of possible candidates
satisfying LΦy (x) = δy (x). We do know that much like solutions to finite systems of linear
equations different candidates differ only by a function in the distributional kernel of L. To
obtain an actual solution to a BVP of the form (1) we need to find one among many of these
candidates that satisfies the boundary condition. To this end it suffices to find, for each y ∈ Ω,
a solution to the homogeneous BVP

Luy = 0 on Ω

uy = Φy on ∂Ω
(7)

One can then find the appropriate fundamental solution, referred to as the Green’s function
Gy (x) for the BVP by setting Gy = Φy −uy. Since Green’s functions are fundamental solutions
theorem 2.2 still holds and one obtains a solution to (1) via

u(x) =
∫
Ω

Gy (x)f (y)dy

The analog of this for inhomogeneous evolution equations is to solve for

 Luy,s = 0 for t > 0

∂ltu
y,s(x, 0) = ∂ltΦ

y,s(x, 0) for l < k
(8)

where k is the time order of the equation (e.g. for the diffusion equation k = 1 and for the wave
equation k = 2). We then obtain the Green’s function from

Gy,s(x, t) = Φy,s(x, t) − uy,s(x, t)

and obtain solutions to the IVP using the same integral property

u(x, t) =
∫ ∞

0

∫
Ω

Gy,s(x, t)f (y, s)dyds (9)
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In the BVP case we are very much at the mercy of symmetries in the domain Ω in order to
be able to solve the homogeneous BVP (7). For evolution equations, on the other hand, we
typically have standard recipes to solve (8) and obtain uy,s directly.

§ 3.1 Green’s functions for the diffusion equation

We wish to solve for every y ∈ Ω and s > 0

 (∂t − ∆)Gy,s = δy,s(x, t)

Gy,s(x, 0) = 0
(10)

In this case we get lucky since, as per remark 2.1, our choice of fundamental solution already
satisfies these properties when it’s applied to the source term through theorem 2.2. Specifically,
the Green’s function for the diffusion equation is precisely the fundamental solution described
in (5):

Gy,s(x, t) = H (t− s)Φ(x− y, t− s)

where H is the Heaviside function and Φ is the heat kernel.

According to the solution formula (9), we get

u(x, t) =
∫ ∞

0

∫
Ω

H (t− s)Φ(x− y, t− s)f (y, s)dyds

=

∫ t

0

∫
Ω

Φ(x− y, t− s)f (y, s)dyds
(11)

Remark. We observe that the solution formula derived above is identical to what we would
have found if we were to use Duhamel’s principle (theorem 1.1): the time integral assembles
solutions to auxiliary problems with initial conditions us(x, s) = f (x, s) and the space integral
is the usual convolution solution to the homogeneous diffusion IVP.

§ 3.2 Green’s functions for the 1-D wave equation

In this case we need to do a little more work since we need to cancel out two effects of the
fundamental solution at initial time. Specifically we need to solve for


(∂tt − c2

∆)uy,s = 0

uy,s(x, 0) = Φy,s(x, 0)

∂tu
y,s(x, 0) = ∂tΦy,s(x, 0)

(12)
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Using the definition of the fundamental solution Φy,s(x, t) given by (6) we simply need to apply
d’Alembert’s formula and then use Gy,s = Φy,s − uy,s. The final result is

Gy,s(x, t) =
1
2c
H

(
c(t− s) − |x− y|

)
We thus get the solution formula

u(x, t) =
∫ ∞

0

∫
R

1
2c
H

(
c(t− s) − |x− y|

)
f (y, s)dyds

=

∫ t

0

∫ x+c(t−s)

x−c(t−s)

1
2c
f (y, s)dyds

(13)

where we have simplified the time range using the fact that |x − y| < c(t − s) is only possible
for s < t.
Remark. We observe that the solution formula derived above is identical to what we would
have found if we were to use Duhamel’s principle (theorem 1.2): the time integral assembles
solutions to auxiliary problems with initial conditions us(x, s) = 0 and ∂tus(x, s) = f (x, s) and
the space integral is the usual d’Alembert’s formula for the homogeneous wave IVP.

§ 3.3 Green’s functions from Duhamel’s solution: application to 2-D

and 3-D waves

In both examples of linear evolution equations above we obtained identical formulae from
applying Duhamel’s principle in the appropriate order (see theorem 1.3) and from the Green’s
integral formula. In hindsight we can see how we could have guessed the Green’s function for
both the diffusion and wave equations by looking at the Duhamel solution formula.

We now use this trick to guess the Green’s function for the 3D wave equation by first solving
the inhomogeneous problem using Duhamel’s principle (theorem 1.2). The Duhamel auxiliary
problems for the inhomogeneous wave equation are


(∂tt − c2

∆)us(x, t) = 0 for t > s

us(x, s) = 0

∂tu
s(x, s) = f (x, s)

By Kirchhoff’s formula the solution is

us(x, t) =
1

4πc(t− s)2

∫
∂B(x,c(t−s))

(t− s)f (y, s)dS =
1

4πc(t− s)

∫
∂B(x,c(t−s))

f (y, s)dS
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Therefore the solution to the inhomogeneous problem is

u(x, t) =
∫ t

0

1
4πc(t− s)

∫
∂B(x,c(t−s))

f (y, s)dSds

We now need to capture the boundary of the spherical integral in a multiplicative function so
the spatial integral can be written over the entire domain.

u(x, t) =
∫ t

0

1
4πc(t− s)

∫
Ω

δc(t−s)
(

|x− y|
)
f (y, s)dyds

Noting that |x− y| = c(t− s) is only possible for s < t we can now safely remove the range of
the time integral as well to obtain

u(x, t) =
∫ ∞

0

∫
Ω

1
4πc(t− s)

δc(t−s)
(

|x− y|
)
f (y, s)dyds

Therefore, we can guess the Green’s function for the 3D wave equation to be

Gy,s(x, t) =
1

4πc(t− s)
δc(t−s)

(
|x− y|

)
(14)

which is in fact the correct Green’s function as it can be verified that (∂tt − ∆)Gy,s = δy,s.

Similarly, for the 2-D wave equation the solution formula based on Duhamel’s principle

u(x, t) =
∫ ∞

0

∫
Ω

1
2πct

√
c2(t− s)2 − |y − x|2

H
(
c(t− s) − |x− y|

)
f (y, s)dyds

where H is the Heaviside function. We can therefore guess the Green’s function for the 2-D
wave equation

Gy,s(x, t) =
1

2πct
√
c2(t− s)2 − |y − x|2

H
(
c(t− s) − |x− y|

)
(15)

§ 3.4 Inferring domains of dependence from Green’s functions

Considering the solution formula (11) for the inhomogeneous diffusion equation, we can make
the following observation about causality. The solution at position x and time t is affected by
the source term f at all positions y ∈ Ω but only at times s < t. In other words the domain of
dependence of u(x, t) on the source f is the cylindrical region Ω× (0, t) in space-time.

17



Similarly, based on the solution formula (13) for the inhomogeneous 1-D wave equation, we
observe that the solution at position x and time t is affected by the source term f at those
times s and positions y that satisfy |x− y| < c(t− s). In other words the domain of dependence
of u(x, t) on the source f is the triangular region (a cone in higher dimensions) centered at x, t
and facing backwards in time with slope c in space-time.

In fact this logic can be applied to any Green’s function. For instance in the case of evolution
equations we can easily see that the solution formula (9)

u(x, t) =
∫ ∞

0

∫
Ω

Gy,s(x, t)f (y, s)dyds

implies that u(x, t) only depends on the value of f at those positions and times y, s that fall in
the support of Gy,s(x, t). Therefore, in general, if we fix x, t and regard Gy,s(x, t) as a function
of y, s, the domain of dependence of u(x, t) on f is precisely the support of Gy,s.

∀x, t : domain of dependence = suppy,sG
y,s(x, t)

= {(y, s) ∈ Ω× (0,∞) s.t. Gy,s(x, t) , 0}

For instance, we can see from the Green’s function (14) for the 3-D wave equation that, in
agreement with Huygen’s principle, the domain of influence for any x, t is the three dimensional
surface of a 4-D cone defined by |x− y| = c(t− s) in space-time.

Similarly, from the Green’s function (15) for the 2-D wave equation we can conclude that the
domain of influence for any x, t is the interior of a 3-D cone defined by |x − y| < c(t − s) in
space-time.

§ 4 Two generalizations of Duhamel’s principle

§ 4.1 Duhamel’s principle for time-factorizable distributions

The first generalization unifies the standard Duhamel’s principle and the Distributional
Duhamel-like results that we used in the previous section to find fundamental solutions for
first order linear evolution equations. For simplicity we will consider the first order variety of
this generlized Duhamel’s principle and we will see that it contains theorems 1.1 and 2.4 as its
special case.
Definition 4.1. Time-factorizable spatio-temporal distributions Suppose f is a distribution
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over C∞
c

(
Ω× (0,∞)

)
where Ω ⊂ Rn is the space domain

f : ϕ(x, t) 7→ ⟨f, ϕ⟩

We say that f is time-factorizable if

1. there exists a parameteric family of spatial distributions fs over C∞
c (Ω) parametrized by a

time-like paramater s varying over (0,∞),

2. there exists a purely temporal distribution T , and

3. for every test function ϕ we have ⟨f, ϕ⟩ = ⟨T, s 7→ ⟨fs, ϕ(·, s)⟩⟩

In other words, f operates by first applying all spatial distributions fs, for all s > 0, to spatial
functions ϕ(·, s) for fixed s. Then the single variable function s 7→ ⟨fs, ϕ(·, s)⟩⟩ is fed to T to

produce the final output of f .

Example 4.1 The spatiotemporal Dirac delta δ(x, t) is time-factorizable. Let T = δ(t)

and let all spatial distributions fs be identical to δ(x), thus producing the temporal map
s 7→ ϕ(0, s). It then follows that for all ϕ

⟨δ(x, t), ϕ⟩ = ⟨δ(s), s 7→ ϕ(0, s)⟩ = ϕ(0, 0)

Example 4.2 Distributions induced by ordinary functions are also time-factorizable.
Suppose f is a function defined pointwise over space-time. Let T = 1 and define fs to
be the distributions

fs : ϕ 7→
∫
Ω

f (x, s)ϕ(x, s)dx

It follows immediately that

⟨f, ϕ⟩ = ⟨1, s 7→
∫
Ω

f (x, s)ϕ(x, s)dx⟩ =
∫ ∞

0

∫
Ω

f (x, s)ϕ(x, s)dxds

▶ Theorem 4.1 Consider the distributional first-order inhomogeneous linear evolution equation 1.1 (∂t − L)u = f

u(x, 0) = 0

where f is a time-factorizable distribution as per 4.1. Define the auxilary problems parameterized

by a time-like parameter s varying over (0,∞) as follows (∂t − L)us = 0 for t > s

us(x, s) → fs as t → s+

where the limit is in the sense of distributions. If all auxiliary problems have a solution us then
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the function

u(x, t) := ⟨T,H (t− s)us(x, t)⟩

where H is the Heaviside function is differentiable and solves the original inhomogeneous problem

in the sense of distributions.

Proof. We simply need to verify that the provided function solves the original PDE. By linearity
we have

∂tu = lim
ϵ→0

1
ϵ

[⟨T, us(x, t + ϵ)⟩ − ⟨T, us(x, t)⟩]

= lim
ϵ→0

1
ϵ

[⟨T, us(x, t + ϵ) − us(x, t)⟩]

= lim
ϵ→0

⟨T, 1
ϵ

[us(x, t + ϵ) − us(x, t)]⟩

= lim
ϵ→0

⟨T,1s<t
us(x, t + ϵ) − us(x, t)

ϵ
⟩ + ⟨T, 1

ϵ
1t<s<t+ϵu

s(x, t + ϵ)⟩

Now we note that the first term approaches ⟨T, ∂tus(x, t)⟩ in the limit. Now pick any test
function ϕ

⟨∂tu, ϕ⟩ = ⟨T, ∂tus(x, t)⟩ + lim
ϵ→0

1
ϵ

∫ ∞

0
1t<s<t+ϵ

∫
Ω

us(x, t + ϵ)ϕ(x, t)dxdt

= ⟨T, ∂tus(x, t)⟩ + lim
ϵ→0

1
ϵ

∫ s

s−ϵ

⟨fs, ϕ(x, t)⟩dt

= ⟨T, ∂tus(x, t)⟩ + lim
ϵ→0

? s

s−ϵ
⟨fs, ϕ(x, t)⟩dt

= ⟨T, ∂tus(x, t)⟩ + ⟨fs, ϕ(x, s)⟩

The spatial operator passes directly through similar integrals and we get:

⟨(∂t − L)u, ϕ⟩ = ⟨T, ⟨fs, ϕ(x, s)⟩⟩ = ⟨f, ϕ⟩

□

We can now see that the standard Duhamel’s principle (theorem 1.1) and the distributional
generalization we derived in the previous section (theorem 2.4) are special cases of the above
result. In each case, the source term is a time factorizable distribution (as seen in examples 4.1
and 4.2).
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An illustration of the spatial analog of Duhamel’s principle: the point x is where we want to find the solution. The
scaled domains Ωα are those that carry the boundary value for auxiliary problems. Polar coordinates and the star
assumption allow us to integrate along the shown line parameterized by the scale parameter α to obtain a solution to
the original problem.

§ 4.2 Duhamel’s principle for spatial equations in bounded star do-

mains

In this section we present a recipe for using an analog of Duhamel’s principle in spatial boundary
value problems. The idea is identical to that of temporal Duhamel’s but instead of moving the
data curve parallel to the time axis we move the data curve “parallel” to the boundary of the
original domain. Once auxiliary problems are formulated and solved we can assemble them
together using a line integral analogous to Duhamel’s temporal principle to get a solution to a
linear inhomogeneous BVP.

▶ Theorem 4.2 Spatial analog of Duhamel’s principle Suppose Ω ⊂ Rn is a bounded star

domain containing the origin and that L is a linear differential operator. Using polar coordinates

suppose the unique intersection with ∂Ω of the line connecting the origin to any point x = (r, θ) ∈ Ω
is (R(θ), θ) ∈ ∂Ω. As such, R(θ) complete characterizes the geometry of the boundary ∂Ω.

Consider the boundary value problemLu = f on Ω

u = 0 on ∂Ω

Set the auxiliary homogeneous problems parametrized with the one-dimensional parameter α ∈
(0, 1) to Luα(r, θ) = 0 on Ωα where Ωα = αΩ is the scaled back version of the original domain

and additional boundary conditions to be determined from L and f . Then we can set boundary
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conditions in such a way that if all the auxiliary problems have solutions then the function

u(r, θ) =
∫ r/R(θ)

1
uα(r, θ)dα

solves the original inhomogeneous BVP.

Instead of a formal proof we provide a recipe that applies to arbitrary linear operators in polar
coordinates (r, θ) where r is a scalar and θ is an (n − 1)-dimensional vector. For simplicity,
here we will assume that n = 2 and that θ is scalar as well. We fist compute various partial
derivatives of u as defined above:

∂ru = ∂r

∫ r/R(θ)

1
uαdα =

1
R(θ)

ur/R(θ) (x) +
∫ r/R(θ)

1
∂ru

αdα

We now note that the first term coincides with the boundary value prescribed to uα for
α = r/R(θ) at a point which coincides with (r, θ). As we accumulate these terms for vari-
ous components of L all the second terms add together to form

∫ r/R(θ)

1
Luαdα = 0

Therefore, all we need to do is keep track of the boundary terms and arrange boundary condi-
tions accordingly.

Similarly, the angular derivative is

∂θu = ∂θ

∫ r/R(θ)

1
uαdα = − ∂θR(θ)r

R(θ)2 ur/R(θ) (x) +
∫ r/R(θ)

1
∂θu

αdα

The first term again involves the boundary condition imposed at uα for the value of α that
makes (r, θ) land on the boundary ∂Ωα. Therefore, we can replace all occurrences of r in these
boundary terms with αR(θ).

For higher order derivatives we follow the same recipe as Duhamel’s temporal principle, namely
force all lower order boundary terms to zero and only allow the highest order term to affect
boundary conditions. For instance for ∂rr we can force the boundary condition uα = 0 to obtain

∂rru = ∂r

∫ r/R(θ)

1
∂ru

αdα =
1

R(θ)
∂ru

r/R(θ) (x) +
∫ r/R(θ)

1
∂rru

αdα

For instance suppose L = ∆ which in polar coordinates is

L = ∂rr +
1
r
∂r +

1
r2 ∂θθ
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As usual we set the first order boundary condition uα = 0 to get

Luα =
1

R(θ)
∂ru

r/R(θ) (x) − ∂θR(θ)r
R(θ)2)

∂θu
r/R(θ) (x) =

[
1

R(θ)
∂r − ∂θR(θ)r

R(θ)2 ∂θ

]
ur/R(θ) (x)

which gives the following formulation of the auxiliary problems:
Luα = 0 on Ωα

uα = 0 on ∂Ωα[
1

R(θ)
∂r − α

1
R(θ)3 ∂θR(θ)∂θ

]
uα = f on ∂Ωα

Remark. If Ω is a spherical domain much of the above calculations simplify since there is no
dependence on θ in boundary terms. However, a sphere has ample symmetry for standard meth-
ods (e.g. method of inverse for L = ∆) to work. In general however, this method allows on to
construct solutions for arbitrary domains for differential operators L that are well understood.
For instance if L = ∆ all homogenous BVPs are immediately solvable using the representa-
tion formula and this theorem provides a recipe for solving the Poisson equation on arbitrary
bounded star domains.

§ 5 Convergence methods

Convergence methods are one of the more useful tools in studying nonlinear PDEs. Consider
A(u) = f where A is a nonlinear differential operator and f is some function or a distribution.
The goal of a convergence method is to come up with a sequence An of approximations to A,
and a sequence un of approximations to u in such a way that in some sense we have An → A,
and Anun → f . In the context of linear PDEs we can dispense with An since a linear operator
is already as well behaved as we could wish. We are thus interested in cases where a sequence
un of functions are such that Lun → f in some sense, and we seek to establish whether un

converge to some function u, in some sense, such that Lu = f?2

First, we must assume that L is invertible in the sense that Lu = 0 together with appropriate
boundary conditions on Ω uniquely defines a solution u in an appropriate function space. This
requirement is necessary since if L has a nontrivial kernel then we can always have sequences
un such that Lun converge but the functions un are separated by non-vanishing members of
the kernel of L.

2It is worth noting that the usual bounds on linear operators are not of use here. First, assuming boundedness of
L is not helpful since in order to prove convergence of un from convergence of Lun, what we need is a lower bound
on the norm of the output of L. Similarly, Poincaré-type inequalities are of no use since (1) the differential operator
L might absorb unbounded derivatives of un in itself, and (2) even if they do not, these inequalities typically provide
lower bounds on higher order derivatives which is the opposite of what is needed here.
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Second we will also have to assume boundedness of Ω since otherwise (1) useful inequalities do
not hold and (2) integration by part is limited to compactly supported integrands.

These two assumptions are the key to proving our two main results. First important conse-
quence is that if we restrict ourselves to a Banach space for candidates u and assume bound-
edness of Ω then invertibility of L implies invertibility of its adjoint L∗. Second, in a bounded
domain we have the nice feature that any smooth solution necessarily has compact support
which allows inverting test functions to prove distributional convergence results.

Finally, we note that by linearity of L if un happen to converge they must converge to the
unique solution of Lu = f . So our only goal is to check whether the sequence of approximate
solutions do converge in a reasonable sense or not.

▶ Theorem 5.1 Suppose L is invertible and Ω is bounded. If the sequence of functions un are such

that Lun → f in the sense of distributions then un converge to the unique solution L−1f in the

sense of distributions.

Proof. Pick any test function ϕ. We wish to show that ⟨un, ϕ⟩ → ⟨u, ϕ⟩ where u = L−1f . To
show this we note that there exists a ψ with compact support such that L∗ψ = ϕ. Thus we
have

⟨un, ϕ⟩ = ⟨un, L
∗ψ⟩ = ⟨Lun, ψ⟩ → ⟨f, ψ⟩

Therefore, un converge in the sense of distributions and we have:

⟨un, ϕ⟩ → ⟨f, (L∗)−1ϕ⟩

□

▶ Theorem 5.2 Suppose L is invertible, Ω is bounded, and 1 ≤ p < ∞. If the sequence of functions

un are such that Lun → f in Lp(Ω) then un converge to the unique solution L−1f in Lp(Ω).

Proof. This is a consequence of the statement made above: that a bounded linear operator in
a Banach space has a bounded inverse. This implies that the inverse of L is continuous in Lp

(which is a Banach space for any 1 ≤ p < ∞) which immediately implies the desired result.

□
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