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Abstract

Human language is, in many regards, unparalleled in the animal world. Although certain referential
and computational aspects of language are reflected in non-human primates and songbirds, an evolution-
ary account for the emergence of the faculty of language remains elusive. In recent years, the capacity of
songbirds to produce and recognize syntactic structures has gained much attention. All these experiments
have focused on representative examples of artificial grammars inspired by Formal Language Theory and
Automata Theory. Specifically, variations on two classes of artificial grammars, namely (AB)n (a finite
state grammar) and AnBn (a context-free grammar), have been used extensively to investigate the pres-
ence of recursive capacities in songbirds learn context free grammars. However, the highly idealized no-
tion of recursion has proven difficult to test properly on human and non-human subjects. Furthermore, the
posited central role of recursion in the development of human language has been disputed by some linguists.
In light of these limitations and inspired by experimental evidence from human linguistics, we propose al-
ternative artificial grammars that forgo the question of recursion and focus on a weaker, more tractable,
capacity that is inarguably required for language processing, namely that of processing long-distance de-
pendencies. We propose two experiments that investigate the ability of Bengalese Finches to learn and rec-
ognize the simplest possible long-distance dependency as well as the more complex crossed long-distance
dependencies.

1 Background

The parallels between human language acquisition and song learning in birds have been recognized at least
from the time of Darwin [1]. Similar to human infants, song learning in birds shows a requirement for ex-
ternal input (tutoring), a critical developmental period ending with maturity, motor-auditory rehearsal sys-
tems, and hemispheric lateralization [2–6]. Furthermore, birdsong exhibits complex syntactic structures
unparalleled by other non-human vocalization systems [5, 7–11].

Birdsong consists of stereotyped syllables (or notes) which the bird learns, through tutoring, to put in highly
variable sequences the structure of which is species-specific. Different songbirds vary in their rates of song
acquisition. Canaries, for instance, proceed to learn a new song every year. Zebra finches and Bengalese
finches, in contrast, have a limited vocal learning period [7]. Deafening and auditory disruption experi-
ments have shown that all songbirds show a reliance on sustained auditory feedback, even after song crys-
tallization, to maintain song structure [6, 8].
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In comparative studies of linguistic components in different animals onemust distinguishbetweenauditory
learning and vocal learning [2, 12]. The former refers to the learned capacity to recognize auditory signals
which is reflected in differential behavioral responses. For instance, songbirds recognize the song of other
individuals and associate them with a limited range of possible meanings (conspecific or not). Similarly,
a dog may learn to recognize the sound “sit” and to associate it with the act of sitting. Vocal learning, on
the other hand, refers to the stronger capacity to not only recognize but immitate vocalizations. In this
sense, almost all vertebrates are auditory learners while vocal learning has only been observed in three
groups of mammals (humans, bats, and cetaceans) and three groups of birds (parrots, hummingbirds, and
songbirds) [4, 12] implying a convergent evolutionary pathway for the development of certain aspects of
language processing.

In this section we frame our central question regarding the capacity of songbirds to recognize and produce
syntactic structures in the context of the broader question of the evolutionary development of the faculty
of language.

1.1 Compnents and Counterparts of Human Language

The human language faculty, in its broadest sense, requires a wide variety of neural components ranging
from sensorimotor systems, working and short-term memory, as well as higher mental faculties [13]. From
a structural point of view, human languages are composed of a collection of rules organized conceptually
as follows: phonology is the set of rules governing the concatenation of “sounds” (phonemes),morphology
is the set of rules governing the concatenation of smallest meaningful units (morphemes) into words (for
instance, procedurally is composed of threemorphemes [[[procedure]-al]-ly]), and syntax is the set of rules
governing the organization ofwords into phrases and sentences,most importantlyword order. Probably the
most formidable property of human language is its infinite capacity for creative production; the power to
“make infinite use of finitemeans” [14]. The classic demonstration of this is the capacity of human language
for arbitrarily long chains of nested subordinate clauses, a property known as recursion [2, 3, 13, 16–18].

Despite the conceptual convenience of this compartmentalization, these components are clearly not in-
dependent of each other nor are they meaningful without semantics. A lexicon, containing mappings of
sounds to meanings, with a capacity to generalize individual sounds to syntactic categories (e.g. noun and
verb) interacts with all these components. Due to all these interactions, it is clear that individual compo-
nents of human language cannot be directly tested in non-human subjects. Instead, we need to identify
fundamental computational processes that appear to be essential in certain aspects of language processing
and seek neural counterparts in auditory sequence processing in other animals [2, 14, 15].

1.2 Syntactic Structure of Birdsong

Birdsong is typically highly variable in structure [5, 7, 8] and its complexity parallels the phonological com-
plexity of human languages [2, 4, 16]. However, birdsong appears to serve only a narrow range of meaning,
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namely in the context ofmate attraction, and lacks any semantic referential property. Despite elaborate vari-
ations in syllable order, birdsong appears to lack a higher level of structure beyond syllables (as opposed to
syntactic structures in human language which exist beyond the level of phonology). As such, birdsong is
considerd to have only a “phonological syntax” [2–4].

Nevertheless, this complex phonological structure requires parsing and sequencing neural machinery
which may be analogous to the corresponding machinery involved in higher level syntactic processing
in humans. Therefore, in the search for the neural substrate of syntactic processing, auditory learning in
songbirds can serve as a model experimental system.

Pairwise transition probabilities between syllables are widely used tomodel the variability of birdsong [5, 7,
8, 10, 20] (Fig. 1), i.e as tools to capture the structure of birdsong as it relates to vocal learning (andnotmerely
auditory learning). The underlying mathematical object in a Markovmodel is a random process defined by
a collection of states and corresponding transition probabilities. The process starts at a designated start
state and proceeds in each step by moving to a new state according to transition probabilities. At each new
state one or more symbols are emitted. When the process arrives at a designated stop state, the sequence
of symbols emitted is considered a valid vocalization in the language of interest. The defining feature of a
Markov model is that transition probabilities between two states only depend on the two states and not on
the history of the steps leading to the current state (i.e lack ofmemory).

1.3 Formal Language Theory and Automata Theory

Formal Language Theory (FLT) and Automata Theory (AT) are components of a mathematical theory of
computation that underlies much of computer science. The general structure of the theory is as follows:
FLT describes how languages can be represented using a grammar which is a collection of production (or
rewrite) rules. For instance, the rewrite rule S → Sa|a defines the language {an} consisting of all strings of
arbitrary length containing the single symbol a.

On the other hand, AT describes automatons (abstract machines idealizing the notion of an algorithm)
with a set of internal states and state transition rules. Automatons differ from Markov processes in that
1) an automaton has no notion of transition probabilities and instead has a set of possible next states at
each states (parallel nondeterminism), 2) some automata are equipped with a memory component. Each
automaton is capable of recognizing (or producing) a corresponding language.

Recognizing (or producing) exceedingly complex languages requires exceedingly complex automata. In this
sense, languages and their corresponding automata are placed in a hierarchy of relative complexity [22] (Fig.
3). For instance, the automaton in Fig. 2 produces the same language {an} as the grammarS → Sa|a. Such
machines with no memory component are called finite-state automata (FSA).
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1.3.1 Regular and Context-Free Languages

Regular languages are those described by a grammar containing rules of the form S → Sa. For instance
the language {an} discussed above is regular. The language {(ab)n} = {ab, abab, ababab, . . .} is also reg-
ular as it is generated by the grammar S → Tb, T → Sa. It can be proved that a FSA recognizes regular
languages and for any regular language there exists a FSA that recognizes it. FSAs and a regular languages
are corresponding machine and language classes in the hierarchy.

Context-free languages (CFL) are those generated by context-free grammars (CFG) which lift the re-
striction imposed on regular grammars: the righthand side of a rewrite rule can be any combination
of terminal or nonterminal symbols while the left handside still must only contain nonterminals.
Consequently, regular languages are all necessarily CFL. An example of a CFL that is not regular is
{anbn} = {ab, aabb, aaabbb, . . .} defined by the grammar S → aSb. Corresponding to CFLs, are a class
of machines called pushdown automata (PDA) which are FSAs with an additional memory stack 1 such
that transition rules between states of the FSA can depend on the value at the top of the stack and the
automaton can add elements to the top of the stack over the course of its operation. It can be shown
that PDAs recognize CFLs and all CFLs are recognized by some PDA and, therefore, CFLs and PDAs form
another level of complexity.

1.4 Artificial Grammar Learning Experiments on Songbirds

As indicated above, vocalized birdsong appears to be nomore complicated thanwhat can be producedwith
aprobabilistic FSAand thus birdsong is a regular language, insofar as vocal learning is concerned. A separate
question, however, is whether the parsing machinery of songbirds can recognize more complex languages
(i.e auditory learning). One paradigm to test such hypotheses is artificial grammar learning (AGL) where
syntactically valid examples of a pre-designated language are presented to subjects in a familiarization pe-
riod and their ability to distinguish between syntactically valid and invalid utterances is evaluated using a
variety of behavioral measures [16, 23, 24]. In the past decade, AGL experiments have been fruitfully per-
formed on humans [25], primates [26], and songbirds [27, 28]. With an eye towards FLT and AT, regular and
context-free languages have been used as examples in such experiments. One study shows that non-human
primates fail to learn to recognize context-free languages [23], and others show that songbirds have such a
capacity [27, 28]. In this section we outline the known methodological flaws in birdsong AGL experiments
with CFL examples. In the next section, with the broader evolutionary question, we outline the conceptual
flaws in the same experiments.

In the first CFL experiment in birdsong [27], European starlings were familiarized with examples of the reg-
ular language {(ab)n} and the CFL {anbn} where a and b are two of the species’ syllables. The increased
call rate of the subjects in the test stage to grammatical utterances is interpreted as indicative of the capacity
of songbirds to recognize context-free languages. There are two critical flaws with this experiment design.

1A stack is a list together with two read and write operations: push adds an item to the top of the list, and pop removes and reads
an item from the top of the list.
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First, a more parsimonious explanation for the recognition capacity is a count-and-compare strategy where
the birds count the number of occurances of the a syllable and compare it with that of the b syllable. 2 Fur-
thermore, although {anbn} is a CFL and human languages are mostly CFLs, {anbn} is a form that appears
in no human language and even human subjects are likely to be employing the same count-and-compare
strategy [2, 25, 29]. Second, for this example CFL to have any bearing on the capacity to parse hierarchical
syntactic structures a one to one and nested correspondance between the a syllables and b syllablesmust be
established. This is impossible to infer from the experiment where all a syllables are identical. A solution is
to extend the a symbol to contain a phonetic category (a collection of syllables instead of a single syllable)
which is paired with syllables of a second b category. In the modified language example sequences have the
form a1a2 . . . anbn . . . b2b1.

In the second CFL experiment in birdsong [28], Bengalese finches are familiarized with examples of the
modified CFL discussed above. First, all available syllables are arbitrarily classified in three categories
A, C, F . Second, birds are familiarized with sequences from the language {AiAjCkFjFi} which captures
the nested pairing of syllables in addition to the condition that k ̸= i, j The results, again, indicated that
birds responded differentially to syntactically valid sequences. However, again, an experiment design flaw
brings the results under question [29] (Fig. 4). with a more parsimonious explanation that birds learn to
generalize the middle syllable and use the usual syllable transition probabilities to recognize syntactically
valid sequences.

1.5 Applicability of FLT and AT to Neural Systems

There are various deep differences between an automaton model of computation and the neural network
structure of the brain that limits the applicabilty of FLT and AT to neural circuits [15, 23]. Here, we note
three main idealizing assumptions of FLT and AT that are violated in physiological systems.

First, a crucial feature of automata (FSA, PDA, or more complex machines) is their nondeterminism in the
sense that each state can have multiple outgoing transitions to other states. For finite state automata it can
be shown that deterministic automata (DFA) and nondeterministic ones (NFA) are essentially equally com-
plex in the sense that they recognize the same class of languages, namely regular languages. In the case of
pushdown automata however, nondeterminism is an essential feature (i.e deterministic PDAs cannot recog-
nize the full CFL class) [22]. Alhtough nondeterminism is well reflected in the Markov models of vocalized
song syntax and the physiological neural network models underlying it, the abstract machine nondeterem-
inism requires that at each state multiple copies of the machine are launched following distinct transition
trajectories [22]. This contradicts physiological requirements hypothesized for branch/chain networkmod-
els of song production and sequencing [9].

Second, an important feature of a language that can render it more or less complex is the unboundedness
of its strings. For instance, the CFL {anbn} is not regular however {anbn; n ≤ N} is regular for any N (e.g.

2That songbirds along with many other animals, including most primates, have the capacity to count and compare is well estab-
lished [2, 23, 28, 29].
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{ab, aabb, aaabbb} is regular and can be recognized by a FSA [23].

Finally, The abstraction of the memory device in AT has certain pecularities that are presumably not re-
flected in brain structure. First, the requirement that the memory of a PDA be a single stack (and not other
forms of a list) is crucial. For instance, if the single stack is replaced by a queue or even by two stacks, the
PDA is suddently transformed into a full-blownTuringmachine; themost powerful universalmachine. This
has dubious consequences if taken seriously physiologically. For instance, assuming there is a neural sub-
strate opereating like a stack there is a strong discrepancy between the miniscule biological cost of adding
a second stack and the theoretical explosion of expressive power.

2 Experiments

In light of the above limitations, as well as the dispute among linguists regarding the centrality of recursion
in the language faculty [13, 17, 30–32], we propose to forgo the question of placing songbird capacities in the
language hierarchy (Fig. 3). Instead, we focus on a specific computational requirement, namely the parsing
memory, which is inarguably involved in human language processing. This computational requirement is
equivalent, from the standpoint of FLT and AT, to supra-regularity. A supra-regular language is one that
ranks higher in the hierarchy than regular langugaes which are recognized by memoryless automata (i.e
FSAs). However, instead of considering the usual {anbn} CFG, with its interpretation as a language with
nested long-distance dependencies, we consider simpler supra-regular grammars that involve the simplest
form of long-distance dependencies.

2.1 Methods

All the following AGL experiments follow the same methodology described in earlier experiments [26–
28]. Syllables (henceforth refered to as A, B, C, . . .) from a corpus of Bengalese finch song will be selected.
Thesse syllables are used to build the artificial grammars and the corresponding familiarization and test
strings described below. Subject birds will be exposed to grammar-conforming familiarization strings of
each language over 60 minutes. To test grammar acquisition, the change in the call response number over
a 5minute period before and after the exposure to familiarization sequences will be analyzed. A significant
behavioral difference in response to novel grammar-conforming strings as compared to grammar-violating
strings after the familiarization period would provide an indication of artificial grammar acquisition. In
accordance with earlier studies, we expect the behavioral response to ungrammatical sequences to involve
birds ceasing their movements and reducing their basal calling rates [28].

2.2 Experiment I: Long-Distance Dependencies

In this experiment we consider the simplest context-free grammar containing long-distance dependencies:
{xS1x, xS2x, xS3x, . . .} where x is either of A or B and Si are arbitrary filler strings not containing A or
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B (Fig. 5). This grammar has multiple advantages over those used in earlier experiments:

• The only grammatical category that birds need to learn is the special role of A and B syllables (as
opposed to the more complicated categories of earlier experiments [28]).

• The Si sequences can be arbitrarily chosen and reused both in familiarization and test strings. This
allows for a natural control for any possible strategy that would involve the acoustic properties of
these filler sequences.

• The simplicity of the grammar allows for a large number of sequences to be used for familiarization
and testing blocking the possibility of memorization [2].

• No local transition rule can capture the long-distance dependency since any starting subsequence
xSi or ending subsequence Six can be grammatical or ungrammatical.

An example set of familiarization and test sequences using only five syllables A, B, C, D, E is as follows.
The set of filler sequences

F = {CDE, CED, DCE, DEC, ECD, EDC}

is randomly split into two groupsF1 andF2 for each subject. Sequences of the formASiA andBSiB where
Si ∈ F1 are chosen for familiarization. Four classes of test sequences are produced as follows: Sequences
of the form ASiB and BSiA where Si ∈ F1 are chosen as ungrammatical test sequences with familiar
filler sequences. Sequences of the form ASiB and BSiA where Si ∈ F2 are chosen as ungrammatical
sequences with novel filler sequences. Similarly, sequences of the form ASiA and BSiB for either Si ∈ F1

orSi ∈ F2 are chosen as grammatical test stringswith familiar or novel filler sequences. A similar procedure
can be applied to larger filler sets F using a larger number of syllables (there are up to 16 distinct syllables
in Bengalese Finch songs [28]) to provide larger familiarization and test sequences with similar properties.

2.3 Experiment II: Crossed Dependencies and Context-Sensitive Languages

In this experiment we try to show how the failures in the idealized assumptions of FLT and AT can lead to
surprising results. We present the subjects to syntactic examples of context-sensitive languages (which, in
general, are arguably only parsable by humans). Context-sensitive languages (CSL) are those generated by
context-sensitive grammars (CSG) in which the restriction on the lefthand side of rewrite rules is lifted. In
a CSG the lefthand side too can be any combination of terminal or nonterminal symbols, e.g. aS → aSc

and bS → bSb which cannot be expressed in a CFG.

First, to shedmore light on the applicability of FLT andATon animal grammar learning, we propose to test a
simple context-sensitive grammar which is theoretically muchmore complex than a context-free grammar
but can be recognized, in principle, with a count and compare strategy as discussed above. The artificial
grammar of interest is:

{xnynzn} = {xyz, xxyyzz, xxxyyyzzz, . . .}
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The strings can be fixed to a specific length to simplify the learning task (e.g. only n = 2). Then various
orderings of the four syllables A, B, C, D can be used for familiarization and test. For instance, the famil-
iarization set would be:

{AABBCC, AACCDD, AABBDD, BBCCDD}

with grammatical test strings:

{DDCCBB, DDCCAA, DDBBAA, CCBBAA}

and ungrammatical test strings:

{AABCBC, AACDCD, AABDBD, BBCDCD, CCABAB, DDACAC}

{ABCCDD, ACBBDD, ADBBCC, BCAADD, CDAABB, CDBBAA}

Second, we consider the copy language: {ωω} where ω is any arbitrary sequence. This language is another
context-sensitive grammar reflecting a more complex form of long-distance dependency known as crossed
long-distance (or cross-serial) dependencies found in human languages such as Dutch [15] (Fig. 6, 7). This
language, too, could in principle be recognized for limited sequence sizes, by a comparison with a working
memory copy of the first occurence of ω. Furthermore, it has been shown that a strong distinction exists
between two and three crossed long-distance dependencies in terms of their ability to be parsed by humans
[15].

Similar to the first CSG, we can fix the length of ω, say to 3, and consider the set W of all 27 possible 3
symbol sequences. Similar to experiment I, W will be split randomly for each subject to W1 and W2 with
familiarization sequences ωω chosen from ω ∈ W1 and W2 is reserved for novel grammatical test strings.
Ungrammatical test strings ω1ω2 can be arbitrarily chosen for ω1, ω2 ∈ W . The occurence of all possible
local transitions in W (and thus in W1 and W2) provides a natural control for any learning strategy that
requires such transition probabilities.
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Figure 1: Markov model for Bengalese finch song (probabilities not shown; taken from [7]).

Figure 2: Finite State Automaton that recognizes the language {an}.

Figure 3: The Chomsky hierarchy of language classes and their corresponding automata (taken from
[23]).
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Figure 4: An example showing overrepresentation of syntactic tests (left) when
compared to syntax-violating tests (right) in familiarization strings. Blue dots
represent the number of familiarization strings that match the C-generalized
test string and red underlines show transition probability violations when com-
pared to familiarization strings (taken from [29]).

Figure 5: Schematic description of the first AGL grammar containing the simplest form of long-
distance dependency. The filler sequences Si are color coded with different shades.

Figure 6: Example of crossed long-distance dependencies requiring a context-
sensitive grammar.
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