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Abstract

Computation and communication through coherence has emerged in the past decades as a

crucial aspect of cortical function. Although there exist well-established methods for detection and

statistical evaluation of coherence for spike-spike and spike-field pairs of recordings, many questions

remain unanswered regarding the statistical analysis of field-field coherence. First, we review the

biological relevance and the mathematical basis of coherence as well as the methods of estimating and

interpreting it with single or multiple trial data. Second, we propose that a related quantity, phase-

locking value, is a more appropriate measure of detecting synchronization across field recording

channels. Furthermore, we propose two solutions to improve the temporal resolution of coherence

and phase-locking estimates. The first method aims to segment recorded time series to stationary

epochs to which standard Fourier analysis can be applied. The second, and more promising, method

uses time-frequency analysis using wavelet transforms to relax the stationarity requirement and is

shown to provide excellent estimates of the time and frequency range of synchronization. Finally,

we briefly review the established nonparametric methods of evaluating the statistical significance of

differences in coherence and phase-locking values.
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1 Background

1.1 Functional Role of Neural Synchronization

The traditional view of information coding in neural circuits has been that the information content
of a neuron’s signal is encoded in its instantaneous firing rate [4]. Two central assumptions underly
this mode of neural computation. First, the firing rate code ignores the precise timing of action
potentials; an assumption which is inspired by the high observed variability of cortical neurons.
Second, the firing rate code requires that downstream neurons act as integrators to extract the
information content of signals they recieve [1, 7]. Although firing-rate coding has been extensively
documented in various neural circuits, the past three decades have seen a surge of theoretical and
emperical support for an alternative mode of neural computation, namely the temporal code. In
contrast to the firing rate model, temporal coding neurons encode information in the precise timing
of their action potentials and require that downstream neurons must act as coincidence detectors.

There exist several justifications for a functional role for precise spike timing. First, many circuits
operate over such short timescales that make it physiologically impossible for downstream neurons
to calculate firing rates [1, 7]. Second, it has been shown that cortical neurons are capable of func-
tioning both as integrators or coincidence detectors depending on physiological context (synaptic
depression rates, membrane conductance, and background activity) [49, 40]. Third, neurons, being
intrinsic oscillators, naturally [53] form synchronizing oscillating ensembles that subserve the bind-
ing of various components of stimuli [1, 42, 17]. Finally, such synchronizing ensembles can robustly
communicate over long range parallel cortical circuits [17, 18, 19]; a functional requirement that
cannot be explained in a firing rate model. The hypothesis of cortical computation and commu-
nication through coherence has been widely studied and validated. Consequently, synchronizing
oscillators have been implicated in visual processing [54], stimulus selection and attention [3, 41,
20, 9], working and short-term memory [38, 28, 30], associative and rule learning [32, 12], and
interareal communication [35, 27, 2].

There are various approaches to detect and interpret synchronizing oscillations among neural pop-
ulations. Two main distinguishing features of such approaches are: 1) the measure of synchrony
which can be either phase locking (concerned only with the co-variation of phase in oscillating
neurons in an ensemble) or coherence (concerned with both phase and amplitude co-variation), and
2) the type of electrophysiological signals of interest (discrete-time spike trains or continuous-time
field recordings) leading to spike-spike, spike-field, and field-field measures of synchrony.

Due to its relative ease of analysis and interpretation, the earliest studies of synchronization focused
on detecting temporal coherence between spike trains obtained from distinct regions of interest in
a circuit [1, 26, 23, 10]. This relative ease originates from two fundamental differences between
spike and field data. First, measuring phase locking in spike-spike and spike-field pairs is relatively
straightforward. Second, well understood stochastic and information-theoretic models for infering
synchrony and causality in spike train data are readily available and fruitfully applied to neuro-
physiological data [51, 44, 58, 6]. However, there remain some difficulties in similar analyses using
field recordings only. Such analyses are of interest due to the relative ease of data collection as well
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as their potential broad applicability to various forms of recordings (LFP, EEG, and even fMRI).

In the present report we focus specifically on the statistical analysis of field-field coherence between
local field potentials. Our central question can, therefore, can be posed as follows: given event related

field recordings from distinct cortical sites over multiple trials, how do we detect temporal windows

and frequency ranges with significant coherence difference across experimental conditions? Although
what follows has general applicability, we briefly mention the specific experimental context that
has provoked this study. Transcranial direct current stimulation (tDCS) has been suggested to
induce faster associative learning in rodent, rabbit, and humans [32] by stabilizing long range
communication. In our experiment of interest, the effect of tDCS is examined in an associative
learning task where macaque monkeys learn where to look for a hidden target within a complex
visual scene [13]. LFPs are recorded over multiple trials from lateral prefrontal cortex (lPFC), to
which tDCS is applied, and inferotemporal cortex (ITC), a high level visual processing area. The
goal is to evaluate the differences in field-field coherence between lPFC and ITC recordings across
tDCS and no-tDCS conditions as well as across successful and unsuccessful trials.

1.2 Fourier Analysis and Spectral Estimation

In this section, we briefly review the basics of frequency domain analysis using the Fourier transform
to which we will refer when mathematically defining coherence. Furthermore, this section serves
as the background for time-frequency analysis (via wavelet transform) and the notion of wavelet
coherence discussed in later sections.

Let {xt} be a continuous-time stochastic process corresponding to event related field potentials
at a given cortical site. By this we mean that at every time t there exists a random variable xt
corresponding to the LFP value at that fixed moment of time. The LFP recording from a single
trial is then a time series xt1 corresponding to realizations of each random variable over all times
t. We denote a collection of N realizations of a stochastic process {xt} over multiple trials by xt:

xt =
(
x

(1)
t , x

(2)
t , . . . , x

(N)
t

)
where the LFP value at time t after the presentation of stimulus in the n-th trial is x(n)

t . As we
shall see in later sections, multiple trial data play crucial roles in both aspects of our analysis:
estimating spectral properties (including coherence) and evaluating statistical significance of their
differences across conditions.

First, we focus only on the simplest form of spectral representations obtained by the Fourier
1 We use the term time series (denoted by xt, yt, . . .) to refer to time-domain functions x(t), y(t), . . .. For convenience, we

use {xt} to denote the stochastic process that gives rise to a time series (a realization of the stochastic process). In this
sense, xt can both refer to a single random variable for fixed t or a single realization of {xt} over all t. This ambiguity
can always be resolved from context.
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transform2:
X(f) =

∫ ∞

−∞
xte

−2πiftdt

The power of xt at frequency f is, by definition, |X(f)|2 where | · | denotes the complex modulus.
Correspondingly, the power spectral density Sxx of a time series xt is:

Sxx(f) = |X(f)|2

For two time series xt and yt the cross-spectral density is a complex quantity reflecting their
combined power and phase difference across different frequencies:

Sxy(f) = X(f)Y (f)

where z denotes the complex conjugate of z3. A few important observations about cross-spectral and
power spectral densities are in order. First, the cross-spectral density is related to cross-correlation
in the time domain by the Wiener-Khinchin theorem:

Sxy = F [Rxy(τ)]

where:
Rxy(τ) =

∫ ∞

−∞
xtyt+τdτ

Second, the power spectral density Sxx(f) is always a real number while Sxy(f) is complex. Third,
Sxx is a special case of Sxy for identical time series xt = yt since at every frequency f we have
Sxx(f) = X(f)X(f) = |X(f)|2. Finally, and most importantly, the magnitude of Sxy(f) is related
to the product of the powers of xt and yt and the phase related to their phase difference at frequency
f . Specifically, fix any f and let X(f) = rxe

iθx and Y (f) = rye
iθy where rx = |X(f)| and

ry = |Y (f)|. We have:
Sxy(f) = X(f)Y (f) = rxrye

i(θy−θx)

This implies that for any pair of time series xt, yt and at every frequency f we have:

|Sxy(f)| = rxry =
√
Sxx(f)Syy(f)

∠Sxy(f) = θy − θx = ∠Y (f) − ∠X(f)

1.2.1 Estimating Spectral Properties with Single Trials

For real world signals, which are necessarily discrete, these spectral properties must be estimated
over a finite time window obtained with a finite sampling frequency (i.e t ∈ {0, 1, . . . , T} instead of
2 For a time series xt, its Fourier transform F [xt] : R → C and wavelet transform Wψ [xt] : R2 → C are denoted by X(f)

and X(τ, f), respectively. Furthermore, we use the same notation for continuous and discrete times series such that the
time variable t may, depending on context, vary continuously t ∈ R or discretely t ∈ Z. The same applies to discrete
versions of Fourier and wavelet transforms X(f) and X(τ, f).

3 In real/imaginary coordinates we have a + bi = a − bi and in polar coordinates reθ = re−θ where θ = ∠z is the phase
and r is the modulus |z|.
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t ∈ R). The natural estimator for the Fourier transform 4 is:

X̂(f) =
T∑
t=0

xte
−2πift

where f varies discretely over integer multiples of 1/T . This leads to a natural estimator for spectral
densities:

Ŝxy(f) = X̂(f)Ŷ (f)

However, the artificial discontinuities caused by a finite window lead to inaccuracies known as
spectral leakage in power spectral estimations which is additionally exacerbated by the finite sam-
pling frequency [22]. The established approach to overcome this difficulty is to use multitapering

methods [22, 47, 5]. First, a collection of orthogonal windowing (or tapering) functions {hk(t)}Kk=1

are defined. Then, multiple rounds of spectral estimation are performed on {xthk(t)}Kk=1 (instead
of directly applying the Fourier transform to xt) which are then averaged to give the final estimate:

Ŝxy = 1
K

∑
k

F [xthk(t)]F [ythk(t)]

Ŝxx = 1
K

∑
k

∣∣∣F [xthk(t)]
∣∣∣2

The most common choice of tapering functions {hk(t)} are slepian functions (Fig. 1), also known
as discrete prolate spheroidal sequences (DPSS).

1.2.2 Estimating Spectral Properties with Multiple Trials

When multiple trial time series xt and yt are available, the natural method for estimating power
spectral density is to average the values estimated from each trial [5, 38, 11, 26, 43, 24]:

Ŝxy(f) = ⟨Ŝ(n)
xy (f)⟩ = 1

N

∑
n

Ŝ(n)
xy (f)

where N is the number of trials and Ŝ(n)
xy is the single trial estimate based on the time series of the

n-th trial and ⟨·⟩ denotes the expectation of a random variable (here the spectral estimate)5.

Similarly, for power spectral density we have Ŝxx(f) = ⟨Ŝ(n)
xx (f)⟩. If no tapers are used for single

4 For any statistic a (like the Fourier transform) we let â denote an estimator for a. Estimators may or may not make
use of multiple trials.

5 The notation ⟨·⟩ can be used in two slightly different senses. In the narrow sense, ⟨a⟩ refers to the expectation E[a] of
a random variable a or to its estimator Ê[a] = 1

N

∑
n

an given N realizations a1, . . . , aN . In the broader sense, ⟨a⟩ is
used in the literature to succinctly refer to any average 1

N

∑
n

an where n does not necessarily index realizations of a
random variable. For instance, if {xt} is a stochastic process, ⟨xt⟩ in the first sense is itself a times series corresponding
to the expected value of xt estimated by its average across trials for each fixed t. In the broad sense, ⟨X̂(f)⟩ can be
used to refer to the average over multiple tapers of the spectral estimator X̂(f). We reserve ⟨·⟩ for the former, narrower
sense. Other arbitrary averages are written out explicitly.
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trial spectral estimates these estimates are equivalent to:

Ŝxy(f) = 1
N

∑
n

X̂(n)(f)Ŷ (n)(f)

Ŝxx(f) = 1
N

∑
n

∣∣X̂(n)(f)
∣∣2

If multiple tapers are used we get:

Ŝxy(f) = 1
N

∑
n

1
K

∑
k

F [x(n)
t hk(t)]F [y(n)

t hk(t)]

Ŝxx(f) = 1
N

∑
n

1
K

∑
k

∣∣∣F [x(n)
t hk(t)]

∣∣∣2

We reiterate a crucial difference between the cross-spectral density Sxy and power spectral densities
Sxx, Syy in the context of these estimation procedures. Power spectral densities are real numbers
and therefore their average (over tapers and/or over trials) are necessarily bound from above
and below by the smallest and largest values in the average. Cross-spectral densities, however, are
complex numbers and the magnitude of their average (over tapers and/or over trials) is only bound
above by the largest magnitude. The magnitude of a complex average can be arbitrarily small (i.e
smaller than the smallest magnitude in the average) with increasing variation in differences phase
differences θy(f) − θx(f) (Fig. 2). This means that the magnitude of a single trial estimate Ŝ(n)

xy

reflects the stability of phase differences over tapers and the magnitude of estimates over multiple
trials reflects the stability of phase differences over trials. However, since sinusoids of identical
frequencies necessarily maintain a constant phase difference over t (across time), this effect is more
pronounced when averaging over multiple trials than when averaging over tapers. In other words,
if the power spectral density of the two LFP channels {xt} and {yt} are kept constant, a large
magnitude of multiple trial average Ŝxy(f) indicates that the two channels are phase-locked at
frequency f meaning they have a relatively constant phase difference over n (across trials). As we
shall see, this effect is at the heartof coherence and phase locking analysis.

2 Spectral Coherence: estimation, interpretation, and limi-

tations

First, suppose xt and yt are abstract time series with continuous-time. The spectral coherence γxy
of a pair of time series xt, yt is a complex function in the frequency domain:

γxy(f) = Sxy(f)√
Sxx(f)Syy(f)

We recall the following fact established in the previous section: for any two time series xt, yt and
any frequency f :

|Sxy(f)| =
√
Sxx(f)Syy(f)
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∠Sxy(f) = θy − θx = ∠Y (f) − ∠X(f)

It follows that for any two time series xt, yt and at every frequency f , γxy(f) is a complex number
with unit magntiude

γxy = eiϕxy(f)

where ϕxy(f) = θy(f) − θx(f) is the phase difference between the two time series at frequency f .

Although the above statement is correct for abstract continuous-time signals, things are different
when spectral densities of real (discrete) signals are estimated from multiple tapers in single trials
or over multiple trials [33, 34]. Therefore, 0 ≤ |γ̂xy|2 ≤ 1 serves as a proxy for robust phase locking
between two time series where robustness refers to small variations of phase difference across tapers
(in single trial estimation) or across trials. This leads to the choice of magnitude squared coherence

|γ̂xy|2 (often called “coherence” in the literature) as a measure of synchronization. However, as we
shall see, |γ̂xy|2 carries information about phase consistency as well as amplitude correlation, and
thus is an imperfect measure of oscillation synchrony.

2.1 Estimating Spectral Coherence

Single trial estimates of spectral densities Ŝxy, Ŝxx (multitapered or not) yield an estimator for
single trial coherence:

γ̂xy(f) = Ŝxy(f)√
Ŝxx(f)Ŝyy(f)

If no tapers are used in spectral density estimates, we have:

γ̂xy(f) = X̂(f)Ŷ (f)
|X̂(f)| · |Ŷ (f)|

and by the observations made above, we always have |γ̂xy(f)| = 1. However, if multiple tapers
are used the numerator is a complex average (over tapers) and the estimates in the denominator
are averages over real values. This has two consequences. First, since the estimated coherence
is an average of multiple tapered estimates, it does not necessarily have magnitude 1. Second,
according to the observation about complex averages (Fig. 2), |γ̂xy(f)| is inversely proportional to
the variation in phase difference between xt and yt at frequency f across different tapers.

A similar, but more pronounced effect is observed when averaging estimating coherence using
multiple trial time series xt and yt. The natural extension of the estimation procedures discussed
so far is to use multiple trial averages in the numerator and denominator of the expression for γ̂xy
[5, 26, 24, 38, 43], that is:

γ̂xy(f) = Ŝxy(f)√
Ŝxx(f)Ŝyy(f)

= ⟨Ŝ(n)
xy (f)⟩√

⟨Ŝ(n)
xx (f)⟩⟨Ŝ(n)

yy (f)⟩

where Ŝ(n) are spectral estimates based on the n-th trial time series x(n)
t and y(n)

t (Fig. 5). Again,
as with averaging over tapers, we observe two properties of this estimator. First, The complex
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average in the numerator can lead to coherence estimates with magnitudes smaller than 1. Second,
the amplitude of the coherence estimate depends both on consistency of phase differences as well
as the correlation in amplitudes (power) across trials. Due to this mixing of effects, coherence is
considered to be an imperfect measure for synchronization [26, 55, 57, 52, 29, 43]. It has been
proposed that the effects of amplitude correlation and phase consistency can be separated by the
following alternative statistics [43]: amplitude coherence γA in which the phase information is
removed from Ŝ

(n)
xy by using |Ŝ(n)

xy | in the numerator:

γ̂Axy(f) = ⟨|Ŝ(n)
xy (f)|⟩√

⟨Ŝ(n)
xx (f)⟩⟨Ŝ(n)

yy (f)⟩

and phase coherence γP in which amplitude information is removed from both Ŝ
(n)
xy and Ŝ

(n)
xx by

moving the averaging to outside the fraction:

γ̂Pxy(f) =

⟨
Ŝ

(n)
xy (f)√

Ŝ
(n)
xx (f)Ŝ(n)

yy (f)

⟩
=

⟨
exp

(
i
[
θ̂(n)
y (f) − θ̂(n)

x (f)
])⟩

where θ̂(n)(f) is the estimated Fourier phase of frequency f in the n-th trial6. While the effect of
field-field amplitude coherence appears to be small [43], phase coherence provides a more theoreti-
cally appealing measure of synchronization than standard coherence. In fact, phase coherence γP

as defined above precisely coincides [43, 29] with the long-establisehd phase-locking value (PLV)
statistic [57, 37, 39, 55, 52] originally defined by Lachaux [26].

2.2 Stationarity Requirement for Fourier Analysis

A crucial condition for Fourier analysis, which is the basis of all the above discussions, is that
the stochastic processes of interest be wide-sense stationary (henceforth “stationary”). A stochastic
process {xt} is stationary if its mean is constant over time and its autocovariance only depends on
the time lag:

⟨xt⟩ = ⟨xs⟩

Cxx(t, t+ τ) = Cxx(s, s+ τ)

for all times t and s7 where:

Cxx(t, s) =
⟨
(xt − ⟨xt⟩)(xs − ⟨xs⟩)

⟩
= ⟨xtxs⟩ − ⟨xt⟩⟨xs⟩

Neurophysiological signals are almost never stationary [11, 25, 57, 24] which can render Fourier
analysis and the consequent coherence estimations unreliable (Fig. 6). For instance, A signal with
varying spectral content over time is not stationary. Therefore, detecting transient synchronized
oscillations necessarily implies that the recordings of interest are non-stationary. This is manifested,
6 The proof of the last step in the RHS is trivial when no tapers are used as proved in the previous section. To the author’s

best knowledge, no proof for the multitapered case has been provided.
7 Note that stationarity is a property of the stochastic process and can be tested using single or multiple trial data.
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for instance, in multitaper estimations of spectral densities. An increased power in a synchronized
oscillation frequency that is only present in some of the tapers and not others will necessarily be
diluted in the averaged multitaper estimation (Fig. 3). Before adressing the issues raised by the
stationarity requirement, we discuss some qualitative measures of testing stationarity.

Testing the first condition of stationarity necessarily requires multiple trials for a reliable estimate:

⟨xt⟩ = 1
N

∑
n

x
(n)
t

If the mean is not constant over time, the standard procedure is to detrend the recordings by
subtracting the mean from each trial, i.e x

(n)
t − ⟨xt⟩, which ensures that the first criterion is

satisfied [14]. The second criterion, however, is more difficult to check over all values of t, s and τ .
An ad hoc test for time-independence of autocovariance is to calculate:

∥Cxx(t, ·) − Cxx(s, ·)∥1 =
∫ ∞

−∞
|Cxx(t, t+ τ) − Cxx(s, s+ τ)|dτ

for all pairs of times t, s (Fig. 4) and demand that they all be relatively small. The second condition
can also be examined visually if we plot the functions ft(τ) = Cxx(t, τ) for different values of t and
look for clusters of curves they produce (Fig. 4). However, neither of these qualitative tests can be
reliably automated.

We consider two approaches to this problem. First, we propose a method of segmenting time
series data to epochs over which recordings are more or less stationary. In this case, coherence
can be estimated as before in each of these stationary epochs. Second, we consider the more estab-
lished method of using time-frequency analysis by wavelet transforms which relaxes the stationarity
requirement. In this case coherence becomes a function of time and frequency (and not just fre-
quency) and, as we shall see, provides excellent resolution of the temporal and frequency range of
synchronized oscillations in nonstationary signals.

3 Coherence Analysis with Nonstationary Data

3.1 Stationary Time Windows Using Autoregressive Models

In this section, we propose an adaptive time window selection procedure that aims to segment
time series to stationary epochs. Other adaptive time windows for coherence analysis have also
been proposed which use criteria other than stationarity for segmentation [36]. Instead, we use a
method used to merely test for stationarity of EEG signals [14] and adopt its natural extension to
adaptively select stationary windows. However, as we shall see, this procedure is slower and is less
reliable than wavelet analysis methods discussed in the next section.

The idea is to use a criteria for stationarity of time series produced by autoregressive (AR) models:
a time series that can be properly fit to an AR model is stationary if the AR model is stable (see
below). We then use a sliding window over LFP recordings and test for stationarity by an AR
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stability criterion. The time series are then segmented between time points at which the sliding
window indicates nonstationarity. We will first establish the ideas in the simpler case of single trial
data and then proceed to develop multiple trial measures of stationarity.

An AR model of order p for a zero-mean time series xt is:

xt ≈ a1xt−1 + a2xt−2 + . . .+ apxt−p

where the error xt −
∑
k akxt−k is a white noise process. The characteristic polynomial for an AR

model is:
P (λ) = 1 − a1λ− a2λ

2 − . . . apλ
p

The stationarity (aka stability, causality) condition for an AR model is this: an AR(p) model
(a1, . . . , ap) is stationary if all the roots λ1, . . . , λp of the characteristic polynomial all lie outside
the unit circle, i.e |λi| > 1. Therefore, we can define a stability index [14] for the AR(p) model to
be:

SI = log min
i
λi

Assuming the time series is well captured by the AR(p) model, it can be considered to be stationary
if its stability index is positive and nonstationary otherwise.

When multiple trial time series xt are available, the natural extention of the above procedure is to
use vector autoregressive (VAR, aka multivariate AR or MAR) models: a VAR model of order p
for N dimensional data (where N is the number of trials) is:

xt ≈ A1xt−1 +A2xt−2 + . . .+Apxt−p

where A1, . . . , Ap are now N × N matrices. The characteristic polynomial for the above VAR(p)
model is:

P (λ) = det(I − λA1 − λ2A2 − . . . λpAp)

And the stability criterion and the stability index are defined as before. The procedure for seg-
menting time series to stationary epochs would then be (Fig. 7):

1. Fix an evaluation window radius r and slide a time window (t− r, t+ r) over the time range
of interest t ∈ [0, T ].

2. Over each evaluation window fit an autoregressive model (AR for single trial data and VAR
for multiple trial data); order and goodness of fit can be checked with Akaike Information
Criterion [14].

3. Segment the entire time series over [0, T ] to n segments 0 < t1 < . . . < tn = T such that the
stability index is positive over each time window and becomes negative only at the boundary
of successive windows.
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3.2 Time-Frequency Analysis with Wavelet Transform

An alternative for avoiding the stationarity requirement in Fourier analyis is to use time-frequency
methods like wavelet transforms instead of discarding the temporal structure and analyizng a
frequency domain representation. Wavelet analysis has the added benefit of providing automatic
tempoeral localization of transient epochs of synchronization [50, 21, 11, 26, 25, 24, 57].

Recall that the Fourier transform of a time series xt is a R → C function given by:

F [xt](f) = X(f) =
∫ ∞

−∞
xte

−2πiftdt

In a wavelet transform, the target space remains the space of complex numbers C but the domain
is augomented to R2 and contains tempoeral information:

Wψ[xt](τ, f) = X(τ, f) = 1
s

∫ ∞

−∞
xtψ

(
t− τ

s

)
dt

where ψ(t) is the mother wavelet, τ represents temporal position and s is the dilation factor (or scale)
which is directly related to frequency f . The standard choice of wavelet for neurophysiological data
is the Morlet wavelet (Fig. 9) [48]:

ψ(t) = π− 1
4 exp (− t2

2
+ ω0t)

where ω0 is the fundamental frequency and is chosen according to technical considerations and the
relation between the scale factor s and equivalent Fourier frequencies is given by [48]:

f = ω0 +
√

2 + ω2
0

4πs

All spectral estimation procedures discussed earlier have natural generalizations to time-frequency
domain. Given two multiple trial time series xt and yt we have [11, 24, 2]:

Ŝxy(τ, f) = 1
N

∑
n

X̂(n)(τ, f)Ŷ (n)(τ, f)

Ŝxx(τ, f) = 1
N

∑
n

∣∣X̂(n)(τ, f)
∣∣2

which give rise to an estimate for wavelet coherence (Fig. 10):

γ̂xy(τ, f) = X̂(τ, f)Ŷ (τ, f)
|X̂(τ, f)| · |Ŷ (τ, f)|

Similarly, wavelet phase coherence (equivalently PLV) is obtained by removing the effect of power
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correlations by moving the averages out of the fraction [11, 24, 2] (Fig. 11):

γ̂Pxy(τ, f) =

⟨
Ŝ

(n)
xy (τ, f)√

Ŝ
(n)
xx (τ, f)Ŝ(n)

yy (τ, f)

⟩
=

⟨
exp

(
i
[
θ̂(n)
y (τ, f) − θ̂(n)

x (τ, f)
])⟩

=
⟨

exp
(
iϕ̂(n)
xy (τ, f)

)⟩

where θ̂(n)(τ, f) is the estimated wavelet phase of frequency f at time τ in the n-th trial and
ϕ̂

(n)
xy (τ, f) denotes the phase difference between the two channels. Exactly like ordinary phase

coherence (PLV), the wavelet phase coherence (PLV) is the average of unit magnitude complex
values as in Fig. 2.

4 Evaluating Statistical Significance of Synchronization Mea-

sures

Aside from few paramteric methods of evaluating statistical significance of coherence (standard,
phase, or wavelet) differences exist [57, 8], the most widely used technique has been nonparametric
methods based on resampling [46, 31, 2, 38, 14, 15, 45]. The basic idea of resampling methods
(e.g. jackknifing, bootstrapping) in the most general sense is this [16]: given a statistic η estimated
by η̂ from a population of observations a1, a2, . . . , aN , we wish to estimate the probability distri-
bution F (η̂) which can then be used to estimate statistical significance measures (e.g. p-values,
confidence intervals). In order to estimate F (·) we resample from the existing set of observations
by a specific procedure (which differentiates different resampling methods). For instance, we can
draw N rounds of N − 1 samples a′

1, . . . , a
′
N−1 from a1, . . . , aN (by leaving one sample out in each

draw) and calculate η̂(a′
1, . . . , a

′
N−1) for each of the N rounds. These N values can then serve as

an approximation of the probability distribution F (·).

For resampling spectral estimates of the kinds discussed in this report there are multiple approaches.
First, resampling can be performed over tapers of spectral estimators. That is, in each resampling
round one or more of the tapering functions are left out of the estimation [46, 38, 2]. Second,
resampling can be performed over trials where coherence estimates are calculated repeated over
subsets of the trial set to provide an approximation of the distribution of each coherence measure
[38, 31]. Finally, when using wavelet coherence once can perform cross-validation on the prediction
of the time of peak coherence [2]: in each resampling round the time of peak coherence is estimated
from a subset of trials and the significance of that estimated time of peak coherence is evaluated
for the left out trials.

5 Simulations

Methods: LFP signals were modeled by a 1/f power spectrum [35, 56]. Sample signals were generated over 400 ms by the
inverse fourier transform of such power spectra with randomly chosen phases. Phases at each frequency were drawn from a
Gaussian distribution centered at 0 with standard deviation π. Random noise was added to each sample from a Gaussian
distribution scaled such that a signal to noise ratio of 20 is achieved. Transient oscillations were simulated by superimposing
the inverse fourier transform of narrow band power spectra concentrated over 30-35 Hz. For single channel recordings and
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non-phase-locked two channel recordings phases of the transient oscillations were drawn randomly as before. For phase-
locked two channel recordings with a specified phase shift, phases for one channel were drawn randomly, and reused, after
applying the phase shift, for the other channel. In either cases, phases vary independently in each trial. The simulated
transient oscillation is then superimposed on the LFP signal over the time window of 100ms with starting point drawn from
a Gaussian distribution centered at 100ms and with standard deviation 5ms. All spectral estimates in the Fourier domain
were obtained by Welch’s multitaper method. Coherence was estimated in each case according to the equations in the text.
For Wavelet analysis, Morlet mother wavelet with fundamental frequency 6 was used. Simulations were implemented in
Python using the scipy package for spectral analysis, statsmodels for autoregressive model fitting, and wavelets package for
wavelet analysis. All code is available online at https://gist.github.com/amirkdv/26c4ed8bf89bb26e1530467187a46f9a.

Standard coherence estimatation is shown in Fig. 5 and 6. These figures show that unless the
amplitude of the superimposed oscillation is unphysiologically high, coherence peaks cannot be de-
tected by using the entire 400ms time window while coherence estimates based on the stationary
window containing the transient oscillation successfully detect synchronization. Furthermore, we
confirm that only phase-locked oscillations (with consistent phase shift across trials) lead to coher-
ence peaks in multiple trial estimates and thus single trial estimates (which still give coherence
magnitudes of less than 1 due to multitaper averaging) may be misleading (right panels in both
figures).

To evaluate the time series segmentation procedure based on stationarity criteria, single channel
recordings were used over multiple trials (Fig. 7 and 8) which point out several pitfalls of this
method. First, surprisingly, the stability index remains negative over the oscillatory period (and
not just at its boundaries). Second, the amplitude of the transient oscillation must be comparable
to that of the underlying LFP (unphysiological) for stability index to become negative over this
period. Third, stability index of presumably stationary signals (with no transient oscillation) show
occasional negative values. Finally, since the process of fitting vector autoregressive models involves
inverting N ×N matrices where N is the number of trials, the computational problem can quickly
become intractable (thus in simulations n = 15 was used).

Wavelet coherence was evaluated over the same conditions as standard coherence (Fig. 10). The
results show excellent resolution of the synchronized period both in time and frequency even with
transient oscillation amplitudes half as large as those used for standard coherence. Additionally,
similar to standard coherence, wavelet coherence estimates over single trials are not reliable. The
alternative synchronization measure, phase-locking value (PLV, identical to phase coherence dis-
cussed in the text), was also estimated with wavelet tranforms (Fig. 11) which show essentially
the same results as wavelet coherence since our simulations do not include any spurious power
correlation between the channels.
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6 Figures

Figure 1: Example sequence of slepian tapering functions {hk(t)}5
k=1 (taken from [47]).
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Figure 2: Relationship between complex average magnitudes and variability in phase. In
both panels complex numbers (black arrows) are drawn with constant magnitude 1 and
phase distributed normally with mean π

4 and with standard deviations 0.06π (left) and 0.6π
(right). The average of each population is also drawn (red arrows). Note that the complex
average magnitude is inversely proportional to phase variance.
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Figure 3: Example traces (top) and power spectra (bottom) of simulated LFP signals with
(right) or without (left) superimposed oscillations. The superimposed oscillations are present
in the 100-200 ms time range (shaded blue in LFP traces) in the 30-35 Hz frequency range
(shaded blue in power spectra) and have 1

3 of the amplitude of the underlying LFP. Power
spectra (bottom) are estimated without tapers by fast fourier transform (black) and with
Welch’s multitaper method (red). Note that the multitaper estimate does not preserve the
power bump at the frequency of superimposed oscillation.
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Figure 4: Example trace (top) of simulated LFP signal with transient superimposed 30-35
Hz oscillations (time range shaded blue) with 1

3 amplitude of the underlying LFP (n=1000).
The average time series ⟨xt⟩ is superimposed (top, green) and is relatively constant over
time. The variance in LFP shows an increase in the superimposed oscillatory period (second
row). An ad hoc example of autocovariance variation over time compares f0(τ) = Cxx(0, τ)
and ft◦ = Cxx(t◦, t◦ + τ) for varying t◦ (third row). Plotted autocovariance functions for
each trial (bottom, each trial has a random color) shows two regimes of spectral content
corresponding to the superimposed oscillation period and those before/after it.
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Figure 5: Example traces (top two ros) of simulated two-channel LFP signals (black and
purple) with transient superimposed 30-32 Hz oscillations (time range shaded blue) with
equal amplitude to the underlying LFP (n=100) under two conditions for superimposed
oscillations: phase-locked (left), and non-phase-locked (right). Magnitude squared coherence
estimates |γ̂xy(f)|2 according to the standard estimate |⟨Ŝxy⟩|2/⟨Ŝxx⟩⟨Ŝyy⟩ are plotted in
each case (bottom) both over the entire time 400 ms window (red) and only over the transient
oscillatory phase (green) from multitapered single trials (thin lines) and combined multiple
trials (thick lines). Note that in the phase-locked case (left), but not the non-phase-locked
case (right), multiple trial estimates can detect the coherence in the transient oscillatory
frequency. In the non-phase locked case multiple trial estimates average out to zero in a
similar fashion as in Fig. 2. Furthermore, if coherence estimation is limited to stationary
periods of interest (green) the effects are more easily detectable when compared to coherence
estimates from the entire 400 ms window (red).
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Figure 6: Identical experiment to Fig. 5 except with superimposed oscillations of amplitude
1
6 of the underlying LFP. The right column shows the same effect as in Fig. 5. The left
column shows that with small (physiological) amplitudes of transient oscillations, coherence
estimation must be done only on stationary regions of interest (green) for the effects to be
detectable.
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Figure 7: Example trace (top) of simulated LFP signal with (left) and without (right) tran-
sient superimposed 30-35 Hz oscillations (time range shaded blue) with equal amplitude to
the underlying LFP (n=15). Stability index is calculated over sliding windows of width 30ms
in each case (bottom) both using AR(5) models of single trial data (thin traces) and using
VAR(5) models of all trials (thick traces). Note that the stationary singal (right) never has
a negative stability index (SI) while the SI for the nonstationary signal becomes negative
over the superimposed oscillation period.

Figure 8: Identical experiment to Fig. 7 except with superimposed oscillations of amplitude
1
3 of the underlying LFP. Notice that the stationarity test is unable to detect the nonsta-
tionary period in the left column. Furthermore, the SI of the stationary signal (right) shows
unexpected dips below zero. Such dips were observed in several rounds of simulations.
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Figure 9: Real (left) and Imaginary (right) components of Morlet wavelets with fundamental
frequency ω0=6 are plotted. The mother wavelet (τ = 0, s = 1) is plotted in black. Two
Wavelets with τ = 0, s = 2 (top) and τ = 2, s = 1 (bottom) are superimposed in purple.
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Figure 10: Magnitude squared wavelet coherence estimates |γ̂xy(τ, f)|2 from phase-locked
(left) and non-phase-locked (right) two channel recordings with similar transient oscillations
as 5 but with 1

6 the amplitude of the underlying LFP (n=100). Estimates based on 5 trials
only (top) and all trials (bottom) are plotted.

22



Figure 11: Wavelet PLV from phase-locked (left) and non-phase-locked (right) two channel
recordings with similar transient oscillations as Fig. 10 (n=100). Estimates based on 5 trials
only (top) and all trials (bottom) are plotted.
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