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abstract This report is composed of two parts: the first covering the
mathematics and the second covering applications of ideas developed in
the former. In the first part, we begin by a review of the topological classi-
fication of fixed points in linear dynamical systems (Arnolʹd 1973). We
then develop the basic apparatus of differential topology (Milnor 1972;
Guillemin and Pollack 2010), and consider elementary results in homo-
topy theory (Munkres 2000). We finally establish the notions of degree
and index and the corresponding classical results. The level of rigor varies
throughout the first part with the main focus being on brevity and clar-
ity rather than on completeness (left-out parts of proofs are documented
nevertheless). In the second part we review a few related results , in the
application of topological methods (Glass 1975; Glass 1977; Strogatz
1985; Winfree and Strogatz 1983, Winfree 2001), specifically degree
and index theorems, to biological/chemical dynamics. The theme of this
study is arguably the ”impossibility of continuous functions” which is re-
visited multiple times in the first part and used extensively in the second
part. Specifically, as we introduce various pieces of machinery, we prove
variations of a non-retraction theorem.
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Part I: theory

Classification of linear fixed points

In this section we summarize the topological classification
off fixed points in linear systems, following the analysis in
(Arnolʹd 1973). We will see that the language of this classifi-
cation will also be useful for arbitrary systems and are closely
related to the Poincaré-Hopf index theorem. Consider an
arbitrary dynamical system, in the generic form ẋ = F (x),
for some F : Rn → Rn nice enough to have well defined
solutions over the phase space M ⊆ Rn. A phase curve is
any trajectory {f t, t ∈ R} in the phase space given some
initial condition x and the phase flow, denoted by {f t}, is
the one-parameter group of all such t-advance mappings
f t : M → M . Two phase flows {f t}, {gt} : M → M are
said to be equivalent, with qualifications to follow, if there
exists a one-to-one mapping h : M → M that carries each
flow to the other, that is:

h ◦ f t = gt ◦ h

for any time t ∈ R. If h is linear, we consider the two flows
(and thus the corresponding systems) linearly equivalent. If h

is a diffeomorphism (to be defined below), we consider the
flows differentiably equivalent. And finally, if h is merely a
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homeomorphism, we consider the flows topologically equiva-
lent. Hereon, we will focus on the latter kind of equivalence
which is the weakest form of equivalence in the following
sense:

Theorem: Linear equivalence implies differentiable equiv-
alence and differentiable equivalence implies topological
equivalence.

proof : Any linear bijective map is a diffeomorphism and any
diffeomorphism is a homeomorphism. ■

In what follows we review the topological classification of
fixed points of linear systems. Consider generic linear sys-
tems

ẋ = Ax , and ẏ = By

where A and B are linear maps on Rn. It turns out to be the
only “interesting” questions lie in topological equivalence
since:

Theorem: Two linear systems ẋ = Ax and ẏ = By over Rn

are linearly equivalent if and only if the spectrum of A and B,
i.e their set of eigenvalues, coincide.¹ Furthermore, they are
differentiably equivalent if and only if the spectrum of A and
B coincide.

proof : By definition, the systems are linearly equivalent iff
there exists a one-to-one linear transformation h : Rn → Rn

carrying the trajectories of one system to the other. Let this
transformation be y = Hx where H is the matrix represen-
tation of h in the standard basis. We have:

By = ẏ = Hẋ = HAx = HAH−1y

and thus B = HAH−1. Recalling the fact from linear alge-
bra that the spectrum of HAH−1 coincides with that of A if
and only if H is an isomorphism completes the proof for the
first claim. We accept the second claim of the proposition as
obvious. ■

No purely imaginary eigenvalues

The fundamental result in the topological classification of lin-
ear fixed points follows (Arnolʹd 1973).

Remark: Eigenvalues of higher multiplicity introduce com-
plications in proofs but do not change the correctness of the
following statements.

Theorem (Linear fixed point classification theorem): Two lin-
ear systems ẋ = Ax and ẏ = Ay, all of whose eigenvalues

¹and the simplicity of eigenvalues is immaterial.

have nonzero real parts, are topologically equivalent if and
only if they have the same number of eigenvalues with posi-
tive and negative real parts. Symbolically, A and B are topo-
logically equivalent if and only if:

π(A) = π(B) , and µ(A) = µ(B)

where π and µ count the number of eigenvalues with posi-
tive and negative real parts, respectively.

proof : Following (Arnolʹd 1973)) we decompose the claim to
the following three statements, the first of which is a known
fact from linear algebra and the last two are fairly easy to
prove.

Lemma: If a linear transformation A : Rn → Rn has no
purely imaginary eigenvalues then the space Rn can be de-
composed into an invariant direct sum

Rn = Rπ + Rµ

where µ and π are the number of eigenvalues of A with neg-
ative and positive real parts, respectively.

Remark: When µ = 0 the fixed point is an unstable node.
When π = 0 the fixed point is a stable node. Otherwise the
fixed point is a saddle fixed point. in which case we refer to
Rµ and Rπ as the incoming and outgoing strands, respectively.

Lemma: If A : Rn → Rn is such that all its eigenvalues
have positive real parts, then the linear system ẋ = Ax is
topologically equivalent to ẋ = x.

Remark: Similarly, if A is such that all its eigenvalues have
negative real parts, then the linear system is topologically
equivalent to ẋ = −x.

Lemma: If the four linear transformations A1,2 : Rn → Rn

and B1,2 : Rm → Rm are such that ẋ = A1x is topologically
equivalent to ẋ = A2x and that ẏ = B1y is topologically
equivalent to ẏ = B2y, then the product systems (ẋ, ẏ) =
(Aix, Biy) over Rn+m are topologically equivalent.

■

Purely imaginary eigenvalues

Topological classification of fixed points with purely imagi-
nary eigenvalues runs into terrible difficulties with transcen-
dental numbers. To demonstrate this, we consider a simple
case: a decoupled product of two harmonic oscillators, with
angular frequencies ω and ω′. The natural phase space for
this system is the torus T 2. Suppose we wish to answer the
following simple question: for what values of ω and ω′ are
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the trajectories of the 4d system closed? Clearly if ω and ω′

are rational multiples of each other (called rationally depen-
dent, or commensurable) then the trajectories are closed. In
fact, the following can be proved by using an elegant appli-
cation of the pigeonhole principle (Dirichlet’s principle) and
a simple induction (Arnolʹd 1973) (a separate induction will
also prove an identical statement for n decoupled oscillators):

Theorem: Each individual trajectory of a system of two de-
coupled harmonic oscillators with angular frequencies ω and
ω′ is:

• closed on the torus if ω and ω′ are rationally dependent,
and

• everywhere dense on the torus otherwise.

And here is the difficulty: we do not have a solution for
the commensurability theorem (and more generally the al-
gebraic dependence problem). For example, it is not known
whether π and e are commensurable or not.

Basics of differential topology

Terminology

Let (X, T ) be a topological space where T is, by definition,
the collection of “open” sets in X . As usual, we drop T

as long as the intended collection of open sets is clear from
the context. Any subset Y ⊆ X is a topological space of
its own, referred to as the subspace topology, in which the
collection of open sets is {U ∩ Y ; U ∈ T }.² Therefore, we
can unambiguously refer to any arbitrary (relatively) open
subset of Y by U ∩ Y where U ∈ T is understood to be an
open subset of the ambient topology. In what follows we
will be mostly concerned with subsets of the euclidean space
and therefore, the only topology we are concerned with is
the standard topology onRn or a subspace topology induced
by the standard topology.

Notation

The half-space Hn ⊂ Rn is

Hn = {(x1, . . . , xn); xn ≥ 0}

²Consider R with the standard topology and the induced subspace topol-
ogy over (0, 2]. In this space (1, 2] is an open subset and (0, 1] is not. In
general we have: open (closed) sets in the subspace topology of Y ⊆ X

are necessarily open (closed) sets in the ambient topology if and only if
Y itself is open (closed) as a set in X .

The unit disk (closed unit ball) Dn ⊂ Rn is

Dn = {(x1, . . . , xn);
∑

x2
i ≤ 1}

and the n-sphere Sn ⊂ Rn+1 is

Sn = {(x1, . . . , xn, xn+1);
∑

x2
i = 1} = ∂Dn

The product S1 ×S1 gives rise to the torus³ T 2 and similarly
the Cartesian product of n circles gives the n-torus T n ⊂
Rn+1. We will only be concerned with 2 dimensional tori
in this report.

Given two topological spaces X and Y we say a function
f : X → Y is a homeomorphism if it is a bicontinuous bi-
jection; that is, a continuous bijection with a continuous in-
verse. If, additionally, f and f−1 have continuous partial
derivatives of arbitrary order we call f a diffeomorphism. Nat-
urally, diffeomorphic spaces are necessarily homeomorphic.

Example: Consider R with the standard topology and [0, 1]
with the subspace topology. The two are not homeomor-
phic since the latter is compact and the former is not. How-
ever, R and (0, 1) are diffeomorphic, for example using a
properly adjusted tangent function.

Figure 1: A diffeomorphism f : (0, 1) → R and a non-
homeomorphism g : [0, 1] → R

Manifolds

A subset M of a topological space X is a manifold of dimen-
sion m (or an m-manifold) if M is locally homeomorphic to
the euclidean space Rm; that is, for every x ∈ M there exists
a neighborhood V ∩ M of x in M and a homeomorphism g

carrying an open set U ⊆ Rk to V ∩ M . If, additionally, we
demand that the local maps be diffeomorphisms (that is M is
locally diffeomorphic to Rm), we call M a smooth m-manifold.

³One can define the torus as this product or prove that the geometric ob-
ject (defined as a parametrized surface) is homeomorphic to the product
manifold of two circles.
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Inwhat follows, this is always the intendedmeaning of “man-
ifold”.

Example: The circle S2 in the plane is a 2-manifold. To
see this consider the two stereographic projections from the
north pole p and the south pole q. The former is a diffeomor-
phism carrying S2 − {p} to R (which qualifies as an open
subset of R) and the latter does the same with S2 − {q}. In
fact, there is no way to map S2 to R with less than two local
diffeomorphisms since one is compact and the other is not.
The same argument holds for Sn in Rn.⁴

Example: The open unit ball in Rn is diffeomorphic to Rn

and therefore a smooth n-manifold.

Figure 2: Stereographic projection (from (Milnor 1972))

Manifolds with boundary An important class of ob-
jects do not qualify as manifolds with the above definition,
namely manifolds with boundary.

Theorem: The half-space Hn is not a manifold in Rn.

proof : Consider any point on the boundary of Hn, that is
any point x = (x1, . . . , xn−1, 0). A neighborhood U ∩ Hn

of x cannot be homeomorphic to an open subset of Rn since
the neighborhood U ∩ Hn, though open in Hn, is not open
in Rn and thus cannot be homeomorphic to an open set in
Rn. ■

The half-space itself gives the basis for the next definition:
M ⊂ Rk is a (smooth) m-manifold with boundary if it is lo-
cally diffeomorphic to the half-space Hm. We refer to the
boundary of M , denoted by ∂M as the set of points in M

corresponding to the boundary of Hm in the local maps.

Example: The unit disk Dn is locally diffeomorphic to Hn

and therefore a smooth n-manifold with boundary. The lo-
cal diffeomorphisms can be established by considering two
inversion transformations centered one at each of the north
⁴Note that the unit sphere in a normed vector space V is compact if and
only if dim V < ∞. The “if” direction is established by the Heine-
Borel theorem and the “only if” direction can be proved using Riesz’s
lemma.

and south poles and using the following two facts: 1 an in-
version is diffeomorphic except at its center, and 2 the image
of a sphere through the center is a hyperplane not containing
the center.

Remark: The definition of the boundary is independent of
the choice of local diffeomorphisms since, by the same argu-
ment as in the proposition above, no point on the boundary
of Hn, which is the hyperplane with dimension n − 1, can
be mapped by a diffeomorphism to an interior point of M .

Remark: The boundary of a manifold in the above sense
only coincides with the topological boundary when m = k.
In fact, when m < k all points in M are boundary points in
the topological sense. In what follows we are only interested
in the boundary in the manifold sense.

We need the following two results for further discussion.
The proofs are straightforward and of the style of proofs in
the next section.

Theorem: If M is a smooth manifold with boundary then
∂M is a smooth manifold without boundary and we have:

dim ∂M = dim M − 1

Furthermore, the interior M − ∂M is a smooth manifold of
the same dimension as M .

Theorem: If M and N are two smooth manifolds then
M × N is also a smooth manifold. If M is a manifold with
boundary and N is a manifold then M × N is a manifold
with boundary.

Remark: The product of twomanifolds with boundary is not
necessarily a manifold (with or without boundary). For ex-
ample, consider [0, 1]which is a 1-manifold inRwith bound-
ary {0, 1}. The product [0, 1] × [0, 1] is not a manifold due
to its corners.

Tangents and derivatives

Tangent spaces At every point x of an m-manifold M

in Rk we can define the tangent space TMx by means of the
local diffeomorphism. Let g be a diffeomorphism carrying
an open set U ⊆ Rm to a neighborhood g(U) of x. Denote
by dgx : Rm → Rk the Jacobian of g which is a linear map
represented, in standard coordinates, as a k × m matrix of
partial derivatives of g. We now define TMx to be the image
of Rm under this linear map. That is:

TMx = dgx(Rm) ⊆ Rk
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In words, the tangent space to M at x is the image of Rm

under the Jacobian of the local diffeomorphism evaluated at
x.

Figure 3: The tangent space of a manifold (from (Milnor 1972))

As usual, the intuition is that the shifted (affine) subspace
x + TMx is the best approximation of M at x by a linear hy-
perplane of dimension dim M . Once ambiguity that needs
to be addressed is to demonstrate that this definition is inde-
pendent of the choice of local parameterization g. We ac-
cept this as given, (Milnor 1972) and (Guillemin and Pollack
2010) both provide simple proofs.
Theorem: Let M be an m-manifold. Then TMx has dimen-
sion m for any x ∈ M .
proof : At any point x ∈ M there exists a local diffeomor-
phism g carrying an open set U ⊂ Rm to a neighborhood
W of x. This gives the following commutative triangle:

W

U
id -

g

-

Rm

g −1

-

where id is the identity map. Differentiating gives:

Rk

Rm id -

dg
u

-

Rm

d(g −1)
x

-

from which it is clear that dgx must have rank m. ■

Derivative of maps on manifolds Given a map
f : M → N between twomanifolds M and N we can define
the derivative dfx of f at a point x ∈ M , where f(x) = y,
by means of the tangent spaces. The formal definition is
more cumbersome than the geometric idea: dfx is the linear
transformation carrying TMx to TNy . Suppose M is an m-
manifold in Rk and N is an n-manifold in Rl. There is a
local diffeomorphism g carrying an open set U ⊂ Rm to a

neighborhood g(U) of x and a local diffeomorphism h car-
rying an open set V ⊂ Rn a neighborhood h(V ) of y. We
can adjust U and V to get the the following commutative
diagram:

g(U)
f - h(V )

U

g

6

h−1 ◦ f ◦ g
- V

h

6

which by demanding the chain rule gives the following com-
mutative diagram (note that the derivatives of g and h are
already well defined):

TMx
dfx - TNy

Rm

dgu

6

d(h−1 ◦ f ◦ g)
- Rl

dhv

6

Now we can simply define

dfx = dhx ◦ d(h−1 ◦ f ◦ g) ◦ dg−1
x

and be guaranteed to have a well defined derivative. By our
construction, the following is obvious:

Theorem: If f : M → N is a diffeomorphism then
dfx : TMx → TNy is an isomorphism everywhere. Con-
sequently, M and N must have the same dimension.

The following theorem can be proved using the same proce-
dure as above using local diffeomorphisms.

Theorem (Inverse function theorem): Let f : M → N be
a smooth map on manifolds M and N both with the same
dimension k and let f(x) = y. If dfx is an isomorphism
(that is, a nonsingular linear map on Rk) then there exists a
neighborhood U of x in M that is mapped diffeomorphically
to an open set f(U) in N .

Classification of smooth 1-manifolds

We mention the following theorem in passing and with no
proof as we will refer to it in the following sections ((Milnor
1972) and (Guillemin and Pollack 2010) both prove this in
an appendix).

Theorem (Classification of smooth 1-manifolds): Any smooth,
connected 1-dimensional manifold is either diffeomorphic
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to S1 or to some interval in R.

Corollary: The boundary of any smooth compact 1-
manifold has an even number of points.

Regular values

Inmuch of what follows regular values play in important role
in establishing results that otherwise would require heavy
machinery of algebraic topology. Here we define them
and prove an important property. Consider a smooth map
f : M → N where M and N have dimensions m and n

respectively. For a point x ∈ M with f(x) = y we say that
x ∈ M is a regular point if dfx has rank n (equivalently, dfx

is surjective).⁵ We say that y ∈ N is a regular value if f−1(y)
contains only regular points. Correspondingly, we can de-
fine singular points in M and singular values in N .

We now establish a very useful result for the case where M

is compact:

Theorem: Let f : M → N be a smooth map and suppose
M is compact and y ∈ N is a regular value. Then the set
f−1(y) ⊂ M is finite.

proof : Since {y} is a closed subset of N its preimage must
be closed in M which by compactness of M implies f−1(y)
must be compact. Furthermore, for any x ∈ f−1(y) there
is a neighborhood of x in M over which f is one-to-one.
Therefore f−1(y) is discrete; and being compact too, it must
be finite. ■

For any regular value y ∈ N , we define #f−1(y) to be the
number of elements in f−1(y) (Milnor 1972).⁶ From the
above theorem it can be shown that: #f−1(y) is locally con-
stant over the set of regular values in N . We will return to
this object later when we link the idea of homotopic equiv-
alence classes to the degree of a mapping.

We end this introductory section by mentioning three im-
portant results without proof (see Guillemin and Pollack
2010 and Milnor 1972 for proofs):

Theorem (Sard’s theorem): Let f : U → Rn be a smooth
map over an open set U ⊆ Rm. Regular values of f are
everywhere dense in Rn (in other words, the set of critical
values of f has Lebesgue measure zero).

Theorem (Preimage theorem): Let f : M → N be a smooth
map between smooth manifolds of dimension m ≥ n. If
⁵In the case where m = n the condition becomes: x is a regular point if

dfx is an isomorphism on Rm.
⁶The definition only makes sense when M is compact, which implies

f−1(y) is finite.

y ∈ N is a regular value of f then f−1(y) is a smooth (m−n)-
manifold.

Theorem (Preimage theorem for manifolds with boundary): Let
M be a manifold with boundary of dimension M and N

be a manifold with dimension n where m > n. Suppose
f : M → N is a smooth map. If y ∈ N is a regular value of
f and a regular value of f restricted to ∂M then f−1(y) is a
smooth (m − n)-manifold with boundary and its boundary
is precisely the intersection f−1(y) ∩ M .

Non-retraction theorem I

We are now ready to prove our first variation of the non-
retraction theorem. This elegant proof was first given by M.
Hirsch (Milnor 1972):

Theorem (Non-retraction theorem I): Let M be a compact
manifold with boundary ∂M . There exists no smooth map
f : M → ∂M which leaves ∂M pointwise fixed.

proof : Suppose there was such a map f . Let y be a regular
value of f (the existence ofmany such points is guaranteed by
Sard’s theorem). Notice that f restricted to ∂M is the iden-
tity map and therefore by the preimage theorem for mani-
folds with boundary f−1(y) must be a smooth 1-manifold
with boundary

∂f−1(y) = f−1(y) ∩ ∂M = {y}

But since the 1-manifold f−1(y) is also compact, by the clas-
sification theorem, it must have an even number of bound-
ary points. Therefore, ∂f−1(y) must have an even number
of elements which is a contradiction. ■

Corollary: Using the above theorem, Milnor gives an elegant
proof of Brouwer’s fixed point theorem (Milnor 1972) which
says that any map g : Dn → Dn must have a fixed point.
The idea of the proof is this. Supposing otherwise, for any
x the two points g(x) and x are distinct points in Dn and
thus one can define the intersection of the line connecting
them and Sn−1. This then introduces a smooth map from
f : Dn → Sn−1 leaving all points on Sn−1 pointwise fixed
which is a contradiction.

Basics of Homotopy Theory

Let X and Y be any topological spaces and f and f ′ be
continuous functions from X into Y . We say that H :
X × [0, 1] → Y is a homotopy (and that f and f ′ are homo-
topic) if it continuously deforms f into f ′ in the following
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Figure 4:Milnor’s proof of Brouwer’s fixed point theorem (Milnor
1972)

sense: H is continuous and

H(x, 0) = f(x) , and H(x, 1) = f ′(x)

for all x ∈ X .

Similarly, if f and f ′ are smooth functions and we demand
that H is a smooth function, then H is a smooth homotopy
and we say that f and f ′ are smoothly homotopic.

Example: Any two continuous functions from R to R are
homotopic.

Example: A path in a topological space X is a continuous
functions f : [0, 1] → X “connecting” to points in X ,
namely f(0) and f(1). Any two paths on Rn are homotopic.

Example: A loop in a topological space X is a path f satisfy-
ing f(0) = f(1). More appropriately, a loop is a continuous
function f : S1 → X . Any two loops in Rn are homotopic.

The above examples give the appearance that homotopies are
not informative objects. We will see in the next section that
this is not the case and that, in the above examples, homo-
topies are “trivial” merely because Rn is “trivial” in a certain
sense: Rn is simply connected.

Before we proceed, we establish the most central property of
homotopies, their composability: if H1 is a homotopy from
f1 to f2 and H2 is a homotopy from f2 to f3 then we can
define H = H2 ◦H1 : X × [0, 1] → Y to be the concatenation
of the two deformation processes, that is:

H(x) =

{
H1(x, 2t) if t < 1

2

H2(x, 1 − 2t) if t ≥ 1
2

where continuity is guaranteed by the fact that

H(x,
1
2

) = H1(x, 1) = H2(x, 0) = f2(x)

From this it follows that:

Theorem: The homotopy relation is an equivalence relation,
henceforth denoted by ≃.

This equivalence relation be the link connecting topology to
group theory.

The same composability argument applies to arbitrary paths
in a topological space: If f, g : S1 → X are two loops in X

then the composition f ∗ g is defined as the concatenation
of the two loops in the same fashion as above. The resulting
function is continuous only if f(1) = g(0). If we denote by
P the set of all paths over X then we can easily verify that
the ∗ operation satisfies all properties of a group over P , mi-
nus being applicable to all members of P (Munkres 2000)⁷
with the identity element being the constant function and
the inverse element corresponding to a path f being the path
going backwards from the ending point of f to the starting
point of f .

The Fundamental Group

We have already shown that the reason we did not get a
proper group using the path concatenation operation ∗ is
that it only applies to paths that are compatible (one ends
where the other starts). The natural restriction that gives
us a proper group is to only focus on loops: Let X be any
topological space and x0 ∈ X be an fixed arbitrary point.
Let L be the collection of all loops on X through x0:

L =
{

f : S1 → X; f cont’s, and x0 ∈ f(S1)
}

Then (L , ∗) is a group (Munkres 2000). Now consider the
effect of the homotopy equivalence relation ≃ on L : we
call the quotient space, that is loops through x0 up to homo-
topy, the fundamental group of X based at x0 and denote it
by π1(X, x0). In other words, The homotopy relation ≃ di-
videsL into equivalence classes each containing a collection
of homotopic loops through x0.

Example: The fundamental group of the circle is Z the cor-
respondence being the “winding number” of a loop about
the circle. The group is generated by two elements: a single
winding clockwise loop and a single winding counterclock-
wise loop.

⁷We can say, therefore, that (P, ∗) is a groupoid but this is not terribly
interesting.
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Two natural questions arise regarding the fundamental
group:

1. Is the group π1(X, x0) independent of x0, at least up to
isomorphism?

2. One guaranteed element of π1(X, x0) is the set of loops
homotopic to the constant loop f(t) = x0. When is the
this the only element of the fundamental group?

Question 1 can be answered by the following intuitively ob-
vious theorem that we accept without proof (Munkres 2000):

Theorem: If X is a path-connected topological space the fun-
damental group is independent of the choice of base point
up to isomorphism.

From here on, we will restrict our attention to path-
connected spaces for which the above proposition holds.
This allows us to drop the base point qualifier and unam-
biguously refer to the fundamental group of X by π1(X).⁸

It is easy to verify the following (Munkres 2000):

Theorem: For any two path-connected spaces X and Y we
have:

π1(X × Y ) ∼= π1(X) × π1(Y )

Example: By the proposition above the fundamental group
of the torus T 2 = S1 × S1 is, up to isomorphism, Z2. This
should be obvious given our discussion of purely imaginary
eigenvalues in linear systems. An induction provides us with
the general relation π1(T n) = Zn.

Question 2 turns out to define its own topological property.
We say that a topological space X is simply connected if it is
path connected and if every loop f : S1 → X through it can
be contracted to a point in the sense that it is homotopic to the
constant function. It is then a matter of definition, that:

Theorem: A simply connected topological space X has a
trivial fundamental group.

Example: Rn is simply connected for any n. Rn − {0} is
simply connected except for n = 1, 2(Munkres 2000). This
is intuitively obvious: in R and R2 loops that contain the
origin cannot be contracted to a point but in R3 (and higher
dimensions) we have “extra dimensions” to deform a closed
loop (which is a 1-manifold) around the origin and contract
it to a point.

⁸This also frees us from having to work with pointed spaceswhich are sym-
bolic representation of the following: if f : X → Y and f(x0) = y0
for some x0 ∈ X and y0 ∈ Y we refer to (X, x0) as a pointed space
and symbolically write: f : (X, x0) → (Y, y0).

Example: Sn is simply connected except for n = 1. This
one can be proved as a consequence of the above which we
will do in the section of deformation retractions.

Induced homomorphisms The central result of this
section is the following:

Theorem: Let X and Y be path-connected topological
spaces.⁹ Then any continuous function h : X → Y in-
duces a homomorphism of fundamental groups: h∗ : π1(X) →
π1(Y ).

proof : The homomorphism is given by h∗(f) = h ◦ f or
more accurately h∗([f ]) = [h◦f ] where [f ] is the homotopy
class of f . Checking that h∗ respects the group operation ∗
of loop concatenation is straightforward. ■

From this two powerful corollaries follow:

Corollary: A homeomorphism between topological spaces in-
duces an isomorphism of fundamental groups.

Corollary: Fundamental groups are a topological invariant in
that they remain identical, up to isomorphism, under home-
omorphisms.

Deformation Retractions

In this section we prove our second variation of the non-
retraction theorem. Given a topological space X we call a
continuous map h : X × [0, 1] → X a deformation retraction
onto a subspace A of X if h(x, 0) = x and h(x, 1) ∈ A for
all x ∈ X and h(a, t) = a for all a ∈ A and all t ∈ [0, 1].
In words, h is a deformation retraction if it is homotopy be-
tween the identity on X and a retraction on A leaving all
members of A pointwise fixed throughout the deformation.

Theorem: If there exists a deformation retraction of X onto
A ⊂ X then the inclusion map i : A → X induces an
isomorphism of fundamental groups. By this we mean, the
induced homomorphism i∗ of fundamental groups is bijec-
tive.

proof : The proof is rather difficult for arbitrary spaces
(Munkres 2000). We provide the intuitive idea here: sup-
pose X is Rn+1 − {0} and A is Sn (for example S1 as a sub-
space of R2 − {0}). The induced homomorphism i∗ of the
inclusion map is one that maps a loop f in Sn to a loop in
Rn+1 −{0} by not doing anything to it! The loop is already

⁹This restriction is not necessary (Munkres 2000) but simplifies the nota-
tion as discussed earlier.
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in Rn+1 − {0}. To prove that this is an isomorphism of fun-
damental groups, we must show that all loops in Rn+1 −{0}
are deformation retractable toSn (that is, they are homotopic
to a loop lying entirely in Sn). This can be trivially done by
collapsing all points in Rn+1 continuously and radially onto
Sn via g(x) = x/|x| which is continuous everywhere in
Rn+1 − {0}. ■

Example: We can now prove that Sn is simply connected
for n > 1: consider the same function g as we used in
the proof of the proposition. This is a deformation retrac-
tion from Rn+1 − {0} to Sn which induces an isomorphism
of fundamental groups. But the fundamental group of the
Rn+1 − {0} is trivial for n + 1 > 2 and thus Sn is simply
connected for n > 1.

The propositions in the preceding two sections are extremely
useful in that they allows us to prove the impossibility of
continuous functions between topological spaces. We will
make extensive use of them in the second part.

Non-retraction theorem II

Theorem (Non-retraction theorem II): There exists no defor-
mation retraction from D2 to S1.

proof : We know the fundamental group of S1 is Z and that
D2 is simply connected and thus has a trivial fundamental
group. Any deformation retraction of D2 onto S1 the two
fundamental groups induces an isomorphism of the funda-
mental groups which is impossible since Z ≇ {0}. ■

Remark: With all its glory, this method does not generalize
to higher dimensions! We cannot use it to prove that Dn+1

does not have a deformation retraction onto Sn for n > 1.
This is because the fundamental group of Sn also becomes
trivial for n > 1 and the contradiction disappears. Even in
the exercises of (Munkres 2000) the n-dimensional case is
delegated to degree theory which we will investigate in the
next section.

Degree theorems

Degree mod 2

The results of this section rely crucially on the assumption
that M is compact and without boundary and that M and N

have the same dimension. We have already seen in previous
sections that in such cases, for any regular value of f the set
f−1(y) is finite and that the the number of points in it, de-
noted by #f−1(y), is locally constant as y ranges over the

Figure 5: There is no deformation retraction from D2 → S1 (Stro-
gatz 1985)

regular values of f . We will see that under certain condi-
tions degree mod 2 is a smooth-homotopy invariant and is
independent of the choice of regular value y. The central
lemma is this (Milnor 1972):

Theorem: (Homotopy lemma) Let f, g : M → N be
smoothly homotopic maps between manifolds with equal di-
mension and suppose M is compact and without boundary.
If y ∈ N is a regular value of both M and N then

#f−1(y) ≡ #g−1(y) mod 2

proof : Let the homotopy be h : M × [0, 1] → N . Since
M is without boundary its product with [0, 1] is a manifold
with boundary. If y is a regular value of h as well, since it
is also a regular value of f and g, by the preimage theorem
for manifolds with boundary, the set h−1(y) is a smooth 1-
manifold with boundary ∂h−1(y) equal to

h−1(y) ∩ [M × 0 ∪ M × 1]

which is

f−1(y) × 0 ∪ g−1(y) × 1

It follows that the number of points in ∂h−1(y) is equal to

#f−1(y) + #g−1(y)

But since a compact 1-manifold has an even number of
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boundary points it follows that #f−1(y) ≡ #g−1(y)
mod 2.

If y is not a regular value of h then we will find a neigh-
borhood U ⊆ N of y consisting only of regular values of f

over which #f−1(y) is constant. Similarly, we can find a
neighborhood V ⊆ N consisting only of regular values of
g over which #g−1(y) is constant. Now by Sard’s theorem,
there must be a regular value of h within U ∩V which would
imply #f−1(y) = #g−1(y). ■

Figure 6: Homotopy lemma (Milnor 1972)
If additionally we require that N is connected, then we can
prove the following which we will accept without proof:

Theorem: Let f : M → N be a smooth map between mani-
folds of the same dimension. Further assume that M is com-
pact with no boundary and that N is connected. Then for
any two regular values y, z ∈ N of f we have:

#f−1(y) ≡ #f−1(z) mod 2

and this common value, called the degree mod 2 of f is iden-
tical to that of any map g which is smoothly homotopic to
f .

Non-retraction theorem III

Theorem (Non-retraction theorem III): There exists no
smooth deformation retraction from Dn+1 to Sn, for any
n, leaving Sn pointwise fixed.

proof : Suppose h : Dn+1 → Sn is such a map. We can
view Dn+1 as the product manifold Sn ×[0, 1] and thus view
h as a homotopy h : Sn × [0, 1] → Sn which smoothly
deforms any two maps f, g : Sn → Sn into one another¹⁰
and this contradicts the following degree mod 2 property:
the constant map c : Sn → Sn has degree mod 2 of zero and
the identity map i : Sn → Sn has degree mod 2 of 1. Thus
there must not exist a smooth homotopy between c and i but
we just said h is one such homotopy. ■

¹⁰This is not a contradiction to the fundamental group isomorphism theo-
rem.

Degree on orientable manifolds

In this section we briefly mention the generalized formula-
tion of the degree of a map (see Milnor 1972 and Guillemin
and Pollack 2010 for proofs) which is occasionally more use-
ful. This generalization requires a further restriction on M

and N , namely that they are both orientable manifolds in the
following sense.

LetM be any smooth k-manifold. At every point ofM there
exists a local diffeomorphism f carrying an open set U ⊆
Rk to a neighborhood g(U) in M . We earlier defined the
tangent space TMx in terms of the image dfx(Rk). As a
linear transformation we can assign an “orientation” to dfx

in terms of the sign of its determinant (which is invariant
under change of bases). A manifold is then called orientable
if it has a choice of local diffeomorphisms such that the sign
of det dfx is constant over M .¹¹

The degree of a map f : M → N defined over smooth ori-
ented manifolds of equal dimensions where M is compact
and without boundary is defined to be

deg(f ; y) =
∑

x∈f−1(y)

sgn det dfx

for any regular value y ∈ N of f . The central result is then
exactly the same as the result for degree mod 2:

Theorem: The degree of a mapping defined as above is in-
dependent of the choice of regular value y and is invariant
under smooth homotopies.

Example: The simplest case to study the degree is when f :
M → Sn in which case the degree is more appropriately
referred to as the winding number. In the simplest case when
n = 1 we can informally convince ourselves that the degree
is precisely equal to the number of times f winds around
the circle (note that since the circle is path-connected the
fundamental group is independent of choice of base point)
and this correspondence is made more clear when we refer
to our characterization of π1(S1) = Z.

The above theorem says that any two homotopic maps over
manifolds satisfying the conditions of the theoremmust have
equal degrees. This is yet another tool to establish impossi-
bility of certain continuous maps (here a continuous defor-
mation of a map to another) as demonstrated in our third
variation of the non-retraction theorem.

A natural question arises: does the above have a converse?

¹¹It follows from the sgn det dfx construction that any such manifold M

has precisely two possible orientations.
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That is, are two smooth maps with identical zeros necessarily
homotopic?
There is a converse in the following sense whichwemention
without proof (see Guillemin and Pollack 2010 for a proof of
a stronger theorem):
Theorem (Hopf degree theorem): Two maps of a compact,
connected, oriented k-manifold M into Sk are homotopic
if and only if they have the same degree.

Index theorems

The notion of indices naturally arises in many types of ques-
tions involving vector fields. In all cases, the index has (as a
topological property) global invariant properties and as such
imposes topological restrictions. In the second part we will
see two modified index theorems suited to specific problem
domains. In this sectionwe look at the classic Poincaré-Hopf
theorem. First, we define the index in terms of the degree of
a mapping and then outline the proof of our main theorem
following (Milnor 1972).
Let v : M → Rm be a smooth vector field on a manifold M .
Consider an arbitrary isolated zero z of v. Some neighbor-
hood U of z is mapped by

g(x) = v(x)/|v(x)|

to Sm. The degree of g : U → Sm is the index of v at the
isolated zero z. Symbolically, ιz(v) is defined to be deg(g).
Theorem (Poincaré-Hopf ¹² index theorem): Let M be a com-
pact manifold and v be a smooth vector field over M with
isolated zeros.¹³ The sum of indices of v at its zeros equals
the Euler characteristic χ(M):¹⁴∑

z v(zero)=0

ιz(v) = χ(M)

Most significantly, the right hand side is independent of the
choice of vector field v.
proof : A complete proof requires quite a lot of work. Here
we sketch the outline of the proof in (Milnor 1972) as it
¹²The Hopf in this and the next theorem refers to Heinz Hopf, not the same

person as Eberhard Hopf, of the Hopf bifurcation.
¹³If M has a boundary we additionally demand that v points outwards ev-

erywhere on the boundary. In what follows we do not need this require-
ment as we will be mostly concerned with manifolds without boundary.

¹⁴We also know that for any closed orientable manifold the Euler character-
istic χ and the genus g satisfy the relation χ = 2 − 2g. Additionally, for
compact 2-manifolds, any triangulation of M satisfies χ = V − E + F

where V is the number of vertices, E is the number of edges, and F is
the number of faces (i.e polygons). A similar generalized result applies
to higher dimension manifolds.

provides insight into alternative more useful formulations
of the theorem.¹⁵ The following lemmas give an intuitive
overview of what the result entails. In all of them we assume
M , and v are as in the theorem:

Lemma: Any orientation preserving diffeomorphism f :
Rm → Rm is smoothly homotopic to the identity.

Lemma: A map f : M → N which carries the vector field
v over M diffeomorphically into the vector field v′ over N

does not change the index at any of the isolated zeros of v.
That is, if a zero z is carried to z′ by f we have: ιz(v) =
ιz′(v′).

Lemma: At any nondegenerate zero z we have ιz(v) =
sgn det dvx(z).

Remark: Specifically, this allows us to write the following
in terms of π and µ of each nondegenerate zero (which we
already discussed in the classification of linear systems). Since
we know that at a nondegenerate zero:

sgn det dvx(z) = (−1)µz

where µz is the number of eigenvalues of the Jacobian map
of v at z with negative real parts. Therefore, we can write:

χ(M) =
∑

z isolated zero
(−1)µz

Remark: The theorem makes no distinction of the degener-
acy of zeros. The case of degenerate zeros must be dealt with
separately.

Lemma: (Hopf’s lemma) The index sum of indices of any v

with isolated zeros is equal to deg(g)where g : ∂M → Sm−1

is the Gauss mapping which assigns to each point x on the
boundary of M the outward unit normal vector at x. Most
significantly, the sum of indices is independent of the choice
of v.

Given the above lemma, it suffices to find any vector field
over M that makes it easy to demonstrate that its sum of in-
dices is χ(M). One such characterization can be done using
Morse’s gradient fields (Milnor 1972). ■

Remark: The Poincaré-Hopf theorem has a differential ge-
ometric analog, the Gauss-Bonnet theorem, which also in-
volves χ(M), that characterizes the index in terms of an in-
teger multiplier of the integral of Gaussian curvature around
the boundary of a Riemannian manifold. In this sense, the
Poincaré-Hopf theorem is a higher dimension generaliza-

¹⁵In (Guillemin and Pollack 2010) the theorem is proved using the notion
of transversality and the Lefschetz theorem.
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tion. However, in many cases, it is easier to apply the fa-
miliar integration techniques to derive new index theorems
as we will see in the next part.

Part II: applications

In this part we look at a family of results in biological and
chemical dynamics with one common theme: impossibility
of continuous maps which we have discussed in detail in var-
ious sections of part I.

Phase maps

The circle S1 and its higher dimension counterparts are the
natural phase space for typical oscillating phenomena. Con-
sider any population of oscillating systems (we will typically
be thinking of the population as a manifold in the space since
the medium may be continuous such as a petri dish of chem-
ical reactants). As time goes on various parts of the popula-
tion go through various phases of periodicity, presumably in
some sort of harmony with the rest of population. A phase
map is an assignment of phase, which we have not yet de-
fined, to each of the members of the population. By phase,
we mean the “renormalized time” (author’s term) of each cell
with respect to its periodicity. Here are some examples (Win-
free 2001):

1. Tides: without requiring any detail about the mecha-
nism, we simply observe that the phenomenon is peri-
odic in the sense that every point on earth is subject to a
repeating succession of qualitatively recognizable stages.
One can pick any of the components of the phenomena
(again, without regard to decouplable complexities, like
harmonics of tidal waves and sensitivities to local shore-
line geometry) and assign to each point on the surface
of the earth a phase, a point on ϕ ∈ S1 corresponding
to the position of an imaginary oscillator with the same
period on a S1. It is evident that this is a better choice
than ϕ ∈ [0, 1] since it avoids giving the appearance
of non-existent discontinuities of phase as the periodic
observable winds around S1 and returns to its “starting
value”. By defining ϕ everywhere on the surface of the
earth we have in effect built a map f : S2 → S1 which
is what we refer to as a phase map.

2. Glycolytic oscillations are observable from various
metabolite concentrations. In a population of yeast
(e.g. a petri dish corresponding toD2 or a 3 dimensional
volume with a boundary) we can define in the same

fashion a map which carries each point of the medium,
without us requiring knowledge of exact biochemical
relationships, to a point on the circle corresponding to
position of each oscillator (a yeast cell) along its own
period given an agreed upon “start phase” everywhere.
For example, one can say the “start phase”, i.e. ϕ = 0,
of each cell is the peak concentration point in time of
phosphofructokinase, a key glycolytic metabolite. Such
a map is again a phase map, say f : D2 → S1.

3. Circadian rhythms of fruit flies: suppose we take for
granted that somehow the circadian rhythm is synchro-
nized to patterns of exposure to light. Then one can
decide, and the choice is arbitrary, that the start phase
is the last exposure to extended darkness. Now suppose
we gather a population of pupae and spread them on a
table (that is [0, 1] × [0, 1], homeomorphic to D2), in a
room under constant light. We wish to perform an ex-
periment (we do not care here what experiment, (Win-
free 2001) elaborates on the experiment the author per-
formed and the results he obtained) where we manipu-
late the light exposure of different regions of the table
by an artificial, moving shadow. At any time, there is
a phase map assigning to each point on D2 a point on
S1 corresponding to the phase of each individual in their
circadian cycle (which varies by different patterns of ex-
posure across the table).

4. Circulating waves in an excitable medium (a nerve fiber,
or a muscle ring in the heart) subject each point of the
medium to a succession of landmarks (Winfree 2001):
“rest”, “excited”, “refractory” and potentially intermedi-
ate values (note that, relatively accurate measurements
of cell membrane potentials of neurons are experimen-
tally done routinely but we do not need any of this in-
formation). This, similar to above examples, imposes a
phase map f : S1 → S1. Similarly, for a 2-dimensional
medium of BZ reagent the phase map carries D2 to S1

and a for a 3-dimensional volume the phase map carries
some manifold with boundary M to S1.

5. A simple phase resetting experiment: consider the gly-
colytic yeast medium from a previous example. Sup-
pose we abruptly combine two populations of yeast,
each synchronous on their own with phases ϕ1 and ϕ2.
It has been experimentally verified that the combined
population approaches a new phase ϕ (after transients)
which is an intermediate “compromise” phase. Suppose
we were to study the behavior of such a phase resetting
experiment. What we wish to study is a resetting map
taking S1 × S1 (i.e. the torus) to S1.
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Impossibility of continuous maps

The above examples are all subject to arguments of the style
of the non-retraction theorem we proved in the previous
part in various forms (Strogatz 1985; Winfree 2001; Win-
free and Strogatz 1983). For example, in Strogatz 1985, the
following seemingly conservative expectations are posed for
the yeast glycolytic phase resetting experiment: i. “inter-
changing the names of groups 1 and 2 will not affect the
outcome ii. if the separate groups agree in phase initially,
they continue at that phase, unaffected bymix true with their
own kind. iii. Slight changes in the initial phases alter the
outcome only slightly.”

This, only to demonstrate, by a winding number argument,
that such a continuous function may not exist.¹⁶ Notice that
our assumption is demanding two additional conditions be-
side continuity: symmetry and that f be such that (condition
ii) f(ϕ, ϕ) = ϕ for any ϕ ∈ S1. This implies that the image,
under the phase map, of the loop over the torus character-
ized by ϕ1 = ϕ2 winds around S1 once and thus has degree
1. But the equivalent loop consisting of two parts ϕ1 = 0
and ϕ2 = 0 has an even degree which is impossible.

Here we demonstrate the point using fundamental groups:

Proposition: There exists no continuous function f : S1 ×

¹⁶The non-retraction results do not apply here as far as I understand. Stro-
gatz does elude to the non-retraction theorem however but proves his
point by a degree argument.

S1 → S1 such that it is: 1. symmetric in its arguments, 1.
for any ϕ ∈ S1 we have f(ϕ, ϕ) = ϕ.

proof : Suppose such a function it exists. It must then in-
duce a homomorphism f∗ between their corresponding fun-
damental groups, the correspondence given by the fact that
f carries every loop in T 2 into a loop in S1. We know that
π1(S1) = Z and π1(T 2) = Z2. The latter means this: the
loop ℓ corresponding to one whole revolution of ϕ1 and ϕ2
around S1 constrained by ϕ1 = ϕ2 and let the loops ℓ1,2 each
making one of ϕ1 wind around S1 once while keeping the
other constant. Then we have ℓ is homotopic to ℓ1 ∗ ℓ2. By
the symmetry requirement we must have f∗([ℓ1]) = f∗([ℓ2])
and therefore f∗(ℓ) must be an even integer. But the second
requirement forces this loop to be mapped to 1 which is a
contradiction. ■

Similarly, consider the BZ reaction in a two dimensional
medium (and the identical argument to the phase map of the
table full of young pupae). By the non-retraction theorem,
the phase map f : D2 → S1 cannot possibly be continuous
and therefore there must be at least one point of discontinu-
ity of f somewhere in the medium. We will return back to
this experiment as the basis of spiral waves in an excitable
medium.

A similar argument applies to the timing of tides described
above. The phase map carries the surface of the earth, home-
omorphic to S2, to the circle which is not itself forbidden
but is inconsistent, degree wise, with the observation that in
a full circle around the earth at any time the phase must finish
two full cycles (as the high tide and low tide loci come in an-
tipodal pairs) (Winfree 2001). Here is again a more succinct
version using the fundamental group:

Proposition: There is no continuous map f : S2 → S1 that
takes the equator to a loop winding twice around S1.

proof : The fundamental group of S2 is trivial and the fun-
damental group of S1 is Z. Therefore, the induced homo-
morphism f∗ of such a continuous map must carry all loops
on the sphere into the identity element of S1 which is the
homotopy class of the constant loop ℓ corresponding to the
winding 0 ∈ Z around S1. This is not possible while de-
manding that the equator loop in S2 is carried to loop with
winding twice about S1. ■

Singularity filaments in the BZ reaction

In the discussion above we only established that certain con-
tinuous functions may not exist. We did not discuss what
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actually happens to the map that must exist, even if it is dis-
continuous. In this section we follow (Winfree and Strogatz
1983) which is the first article in a series of articles which de-
scribe a topological model of the three dimensional spiraling
wave in the BZ reaction based only on satisfying the known
topological constraint of the corresponding manifolds. Here
we outline the main arguments:
As we already demonstrated there must be a singularity of
some sort, referred to as a phase singularity in the phase map
of the BZ oscillator in a two dimensional medium. Now
consider a loop in the medium (which we assume is the open
ball instead of D2 since special care is needed for treating
phase singularities that arise or annihilate on the boundary).
Let the loop be so far from any disturbance that along the
loop the entire medium is quiescent (and thus has constant
phase). This loop is mapped by the phase map to the constant
loop in S1.
Suppose we isolate a single singularity in a closed loop. By
observation of pattern of the spiral waves, we know that such
a loop must be carried by the phase map to a loop that winds
about S1 once clockwise or counterclockwise. As the inte-
rior of our first large loop is disturbed singularities arise but
always such that the loop is still mapped to the constant loop
in S1. If we excise neighborhoods of each arising singularity,
the previous argument tells us that singularities must arise
in pairs of clockwise and counterclockwise rotating cores.

Now consider a three dimensional volume (that is a 3-
manifold with boundary). Again ignoring the bound-
ary for simplicity the same argument as above ap-
plies to infinitesimally close cross sections of the vol-
ume. The spatial position of singularities in adjacent

cross sections can be brought arbitrarily close to each
other. Therefore, we would guess by the preceding argu-
ments that phase singularities lie on a looped 1-manifold
within the excitable volume (the singularity filaments).

Here is another way of arriving at the same idea of singular-
ity filaments: In the 2 dimensional case, variation of phase
around any loop enclosing a single rotor must occur monot-
incally such that in a single wind of the loop the phase comes
back to its original value on S1. Therefore, the average con-
centration contour passes through the center of the rotor:

It is therefore reasonable to define the locus of the center of
the rotor to be the intersection point of contours of con-
stant concentration with the average corresponding concen-
tration for each species.
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Figure 7: Intersection of average concentration contours as the cen-
ter of the rotor (from (Winfree and Strogatz 1983))

Now returning back to the 3 dimensional medium, extend-
ing the above argument yields the geometric locus of phase
singularities as the intersection of the two manifolds corre-
sponding to the surfaces of constant concentration one for
the average concentration of each species. This is precisely
the singularity filaments the earlier arguments postulated:

Figure 8: Singularity filaments as the intersection of constant con-
centration surfaces with average concentration (from
(Winfree and Strogatz 1983))

Excursion: A natural question is: what is the geometric shape
of the scrolling waves? Our first guess, based on looking at
the petri dish for not too long, may be the Archimedean spi-
ral. Another model is the circle involute. The two models

have significant differences in their description of the core
of the phase singularity (called the rotor): the Archimedean
spiral is such that all phase contours must converge into a
point (this already poses a topological difficulty, see Winfree
2001) but the involute circle model is such that spirals do not
get closer than a radius to the core. Additionally, the direc-
tion of propagation at the core for the Archimedean spiral is
far from radial whereas the involute circle has the property
that the direction of propagation obey Huygen’s principle:
the direction of propagation is always perpendicular to the
wavefront.

Alternative index theorems

In this final section we look at an index theorem that is tai-
lored to specific biological/chemical phenomena. This result
(Glass 1975) is an index theorem¹⁷ for the class of dynamical
systems for which there exists a inner and an outer trapping
region. That is a small ball m in the phase space and a large
ball M such that the flow of the dynamical system is always
inwards on M and outwards on m. Such a requirement is
typically met in ecological and chemical networks (excep-
tions do exist, for example invasion/extinctionmodels do not
have the corresponding small ball m and the following the-
orem does not hold).
Proposition: Suppose the trapping balls m and M exist for
an n-dimensional dynamical system. Then

n∑
i=1

(−1)πi = 1

where πi as before is the number of eigenvalues of the Ja-
cobian at fixed point labeled with i that have positive real
parts.
proof : Note that the annular trapping region can be embed-
ded (Guillemin and Pollack 2010) in the n-sphere with the
repellent boundary identified as an unstable source at either
of the poles. The Euler characteristic of the embedding space
(which is Sn) is χ = 1 + (−1)n. The Poincaré-Hopf theo-
rem written over this region, as we have already paraphrased
it earlier, says:

n+1∑
i=1

(−1)µi = χ

¹⁷The approach of proving modified index theorems for specific phenom-
ena has also been pursued in (Davidsen, Glass, and Kapral 2004) gives an
index theorem for phase singularities we discussed above over a punc-
tured sphere - which is important, say in the heart- and in (Glass 1977)
which applies an index theorem to justify peculiar limb regeneration
experimental data.
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Where one of the fixed points in the sum is an unstable node
placed at the south pole corresponding to the inward flow of
the dynamics which has µi = 0. The result now follows by
a rearrangement and noting that πi + µi = n for all eigen-
values. ■
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